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1 ABSTRACT

1 Abstract

Two seemingly con�icting properties of native proteins, such as enzymes and
antibodies, are known to coexist. While proteins need to keep their speci�c
native fold structure thermally stable, the native fold displays the ability to
perform large amplitude motions that allow proper function[1, 2]. This con�ict
cannot be bridged by compact objects which are characterized by small am-
plitude vibrations and by a Debye density of low frequency modes. Recently,
however, it became clear that proteins can be described as fractals; namely, ge-
ometrical objects that possess self similarity[3, 4, 5]. Adopting the fractal point
of view to proteins makes it possible to describe within the same framework
essential information regarding topology and dynamics[6, 7] using three param-
eters: the number of amino acids along the protein backbone N , the spectral
dimension ds and the fractal dimension df . The fractal character implies large
amplitude vibrations of the protein that could have led to unfolding. We show
that by selecting a thermodynamic state that is �close� to the edge of stability
against unfolding, nature has solved the thermostability con�ict. Starting o�
from a thermal marginal stability criterion we reach a universal equation de-
scribing the relation between the spectral and fractal dimensions of a protein
and the number of amino acids. This equation is obeyed by a large class of pro-
teins regardless of their source or function. We suggest that deviations from this
�equation of state� for protein topology may render a protein unfolded. Nature's
solution might be incorporated when planning biologically inspired catalysts.

Based on a generalization[8] of the Peierls instability criterion[9], we derive
a general relation between the spectral dimension ds, the fractal dimension df
and the number of amino acids along the protein backbone:

2
ds

+
1
df

= 1 +
b

ln(N)
. (1)

The spectral dimension ds governs the density of low frequency normal modes of
a fractal/protein. More precisely, denoting the density of modes g (ω), the scal-
ing relation g (ω) ∼ ωds−1 holds for low frequencies. Describing the mass fractal
dimension df is most convenient using a three dimensional example. Draw a
sphere of radius r enclosing some lattice points in space and calculate their mass
M(r), increase r and calculate again. Do this several times and if M(r) scales
as rdf the exponent df is called the fractal dimension. For a regular 3D lattice
both ds and df coincide with the usual dimension of 3. For proteins however,
it is usually found that ds < 2 and 2 < df < 3, leading to an excess of low
frequency modes and a more sparse �ll of space[3, 4].

In order to test the validity of equation (1), we calculated the spectral and
fractal dimensions for a data set of 543 proteins. Calculations were preformed
on known protein structures, all structures were downloaded from the Protein
Data Bank (PDB)[10]. The proteins that were chosen di�er in function and/or
source organism and represent a wide length scale ranging from 100 to 3000
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1 ABSTRACT

residues. Statistical analysis of the data gathered reveals satisfying agreement
with equation (1).
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2 THESIS OUTLINE

2 Thesis Outline

Due to the interdisciplinary nature of the work, the theoretical background pre-
sented in chapters 3 - 5 and 7, engulfs several presumably unrelated topics that
merge together in later chapters. Striving towards a self contained document I
couldn't avoid a brief introduction on proteins, fractals, the Gaussian Network
Model (GNM) and thermal stability. One who is familiar with these topics can
skip the relevant chapters without further due. One who chooses to read them
must keep in mind that the theoretical background chapters are concise and
mainly deal with topics that are relevant to later chapters. One must also keep
in mind that these chapters don't contain any original material and are strictly
a summary of the discussed topics. While some paragraphs were completely
written by me in order to present things from the point of view I found appro-
priate, other paragraphs were selected from various sources and put together
with only minor changes.

Chapters six eight and nine, may be considered the heart of this thesis.
They describe our original contribution to the subject: From building a data
base containing the spectral and fractal dimensions of 543 proteins through the
derivation and validation of relation (1) and suggestions for further research.
The more technical part of the research, dealing with calculation techniques of
the spectral and fractal dimensions is also described in these chapters. The fol-
lowing chapters are actually appendixes. The �rst two are computer programs
written in MATLAB. The �rst program calculates the fractal dimension and
radius of gyration of a protein, given its PDB code. The second program cal-
culates the eigenfrequencies of a protein within the Gaussian Network Model
framework. The third appendix describes an alternative route to equation (1).
The forth appendix is a raw data table that displays fractal and spectral di-
mension calculations preformed on 543 proteins. The computer code and data
may be of help for researchers that choose to repeat the work done here and/or
continue it.
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3 PROTEINS

3 Proteins

The word protein comes from the Greek word "prota", meaning "of primary
importance". These molecules were �rst described and named by the Swedish
chemist Jöns Jakob Berzelius in 1838. However, proteins central role in living
organisms was not fully appreciated until 1926, when James B. Sumner showed
that the enzyme urease was a protein[11]. Proteins are of prime importance in
organisms and participate in numerous processes within cells. Many proteins are
enzymes that catalyze biochemical reactions, and are vital to metabolism. Pro-
teins also have structural or mechanical functions, such as actin and myosin in
muscles, and the proteins in the cytoskeleton, which forms a system of sca�old-
ing that maintains the cell shape. Other proteins are important in cell signaling,
immune responses, cell adhesion, and the cell cycle.

Figure 1: The 20 common amino acids of proteins. The structural formulae
show the state of ionization that would predominate at pH 7.0. The unshaded
portions are those common to all the amino acids. The portions shaded in
red are the R groups, unique chemical groups that characterize the 20 common
amino acids.
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3.1 Biochemistry 3 PROTEINS

Figure 2: The pentapeptide serylglycyltyrosylalanylleucine, or
Ser�Gly�Tyr�Ala�Leu. Peptides are named beginning with the amino
terminal residue, which by convention is placed at the left. The peptide bonds
are shaded in yellow; the R groups are in red.

3.1 Biochemistry

Proteins are large organic compounds, made of amino acids. The standard
twenty amino acids that comprise proteins are shown in �gure (1)[12]. Proteins
are arranged in a linear chain and joined together between the carboxyl atom
of one amino acid and the amine nitrogen of another. The amino acids in a
protein are linked by peptide bonds formed in a dehydration reaction. Once
linked in the protein chain, an individual amino acid is called a residue and the
linked series of carbon, nitrogen, and oxygen atoms are known as the protein
backbone. Due to the chemical structure of the individual amino acids, the
protein chain has directionality. The end of the protein with a free carboxyl
group is known as the C-terminus or carboxyl terminus, while the end with a
free amino group is known as the N-terminus or amino terminus. An example
of a short protein, which is actually a polypeptide, is depicted in �gure (2)[12].

3.2 Biosynthesis

The sequence of amino acids in a protein is de�ned by a gene and encoded in the
genetic code. Genes are actually segments of DNA that are �rst transcribed into
pre-messenger RNA and then translated into proteins. This idea is part of the
central dogma of molecular biology and is depicted in �gure (3)[12]. The unique
amino acid sequence is speci�ed by the nucleotide sequence of the gene encoding
the protein. The genetic code is a set of three-nucleotide sets called codons and
each three-nucleotide combination stands for an amino acid; for instance CAG
stands for Glutamine and CCC stands for Proline. Because DNA contains four
nucleotides, the total number of possible codons is 64; hence, there is some
redundancy in the genetic code and some amino acids are speci�ed by more
than one codon. The amino acid sequence of a protein is also referred to as the
primary structure of the protein. The �rst protein to be sequenced was insulin,
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3.3 Structure and Function 3 PROTEINS

Figure 3: The central dogma of molecular biology, showing the general path-
ways of information �ow via replication, transcription, and translation. The
term �dogma� is a misnomer. Introduced by Francis Crick at a time when lit-
tle evidence supported these ideas, the dogma has become a well-established
principle.

by Frederick Sanger, who won the Nobel Prize for this achievement in 1958.

3.3 Structure and Function

Protein are known to naturally fold into native three dimensional structures, the
folding of proteins into this native form is usually favored under physiological
conditions. The native protein structure usually has functional relevance, a
protein that has not folded into its native structure may not function properly.
Biochemists often refer to four distinct aspects of a protein's structure:

� Primary structure: the amino acid sequence.

� Secondary structure: regularly repeating local structures stabilized by hy-
drogen bonds. The most common examples are the alpha helix and beta
sheet, also see �gure (4). Because secondary structures are local, many
regions of di�erent secondary structure can be present in the same protein
molecule.

� Tertiary structure: the overall shape of a single protein molecule; the
spatial relationship of the secondary structures to one another. Tertiary
structure is generally stabilized by non local interactions, most commonly
the formation of a hydrophobic core, but also through salt bridges, hydro-
gen bonds, disulphide bonds, and even post-translational modi�cations.

� Quaternary structure: the shape or structure that results from the inter-
action of more than one protein molecule, usually called protein subunits
in this context, which function as part of the larger assembly or protein
complex.

10



3.3 Structure and Function 3 PROTEINS

Figure 4: Three views of one monomer of the protein triose phosphate isomerase
(PDB code 1TIM). Left, an all-atom view colored by atom type. Middle, a
cartoon view colored by secondary structure. Alpha helices are colored magenta,
beta sheets are colored yellow. Right, a solvent-accessible surface view colored
by residue type (acidic residues red, basic residues blue, polar residues green,
non polar residues white).

Proteins are not entirely rigid molecules. In addition to these levels of structure,
proteins may shift between several related structures while they perform their
biological function. In the context of these functional rearrangements, these ter-
tiary or quaternary structures are usually referred to as "conformations," and
transitions between them are called conformational changes. Such changes are
often induced by the binding of a substrate molecule to an enzyme's active site,
or the physical region of the protein that participates in chemical catalysis. In
solution all proteins also undergo variation in structure through thermal vibra-
tion and the collision with other molecules.

The native conformation is lost, as a result of denaturation, at extreme pH
values, at high temperatures, and in the presence of organic solvents, detergents,
and other denaturing substances, such as urea. The fact that a denatured pro-
tein can spontaneously return to its native conformation was demonstrated for
the �rst time with ribonuclease, a digestive enzyme. An illustration of the fold-
ing and denaturation of rebunuclease is shown in �gure (5)[13]. Discovering the
native structure of a protein can provide important clues about how a protein
performs its function. Common experimental methods of structure determina-
tion include X-ray crystallography and NMR spectroscopy, both of which can
produce information at the atomic resolution. The �rst protein structures to be
solved included hemoglobin and myoglobin, by Max Perutz and Sir John Cow-
dery Kendrew, respectively, in 1958[14, 15]. Both proteins three-dimensional
structures were �rst determined by X-ray di�raction analysis. The structures
of myoglobin and hemoglobin won the 1962 Nobel Prize in Chemistry for their
discoverers. Today there are more than 45,000 known protein structures in the
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3.3 Structure and Function 3 PROTEINS

Figure 5: In the native form (top right), there are extensive pleated sheet struc-
tures and three α helices. The eight cysteine residues of the protein are forming
four disulphide bonds. Residues His-12, Lys-41 and His-119 (pink) are particu-
larly important for catalysis. Together with additional amino acids, they form
the enzyme's active center. The disulphide bonds can be reductively cleaved
by thiols (e.g., mercaptoethanol, HO-CH2-CH2-SH). If urea at a high concen-
tration is also added, the protein unfolds completely. In this form (left), it is
up to 35 nm long. Polar (green) and apolar (yellow) side chains are distributed
randomly. The denatured enzyme is completely inactive, because the catalyt-
ically important amino acids (pink) are too far away from each other to be
able to interact with each other and with the substrate. When urea and thiols
are removed, secondary and tertiary structures develop again spontaneously.
The cysteine residues thus return to a su�ciently close spatial vicinity that
disulphide bonds can once again form under the oxidative e�ect of atmospheric
oxygen. The active center also reestablishes itself. In the folded state, the ap-
olar side chains (yellow) predominate in the interior of the protein, while the
polar residues are mainly found on the surface. This distribution is due to the
�hydrophobic e�ect�, and it makes a vital contribution to the stability of the
native conformation.
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3.3 Structure and Function 3 PROTEINS

Protein Data Bank (PDB)[10], �gure (4) shows computer generated models for
one of them.
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4 FRACTALS

4 Fractals

This chapter will provide a short and informal introduction to fractals. The
main aim is to provide the reader with a general idea about fractals and frac-
tal dimensions. A well known fractal, the Sierpinski gasket, will serve as an
example.

4.1 Introduction

� Fractal - "A rough or fragmented geometric shape that can be subdivided
in parts, each of which is (at least approximately) a reduced size copy of
the whole� Benoît Mandelbrot[16].

The term fractal was coined by Benoît Mandelbrot in 1975 and was derived
from the Latin word fractus, meaning "broken" or "fractured". A fractal as a
geometric object generally has the following features[17]:

1. Simple and recursive de�nition.

2. Fine structure at arbitrarily small scales.

3. Self similarity, at least approximately or stochastically.

These de�nitions may be rather puzzling encountered for the �rst time. Instead
of trying to explain their meaning in the general case, I will discuss them through
a simple example.

4.2 The Sierpinski Gasket

The Sierpinski gasket, also called the Sierpinski triangle, is a fractal, named af-
ter Waclaw Sierpinski who described it in 1915. The Sierpinski gasket is one of
the basic examples of self-similar sets. Figure (6) illustrates the recursive con-
struction of the Sierpinski gasket. Following the steps described in the caption

Figure 6: One can construct the Sierpinski gasket recursively as follows. Start
with any triangle in a plane, the canonical Sierpinski gasket uses an equilateral
triangle with a base parallel to the horizontal axis (left image). Shrink the
triangle by half, make two copies, and position the three shrunken triangles so
that each triangle touches the two other triangles at a corner (second image
from the left). Repeat the second step with each of the smaller triangles an
in�nite number of times (third image from the left and so on).

14



4.3 The Fractal Dimension 4 FRACTALS

of �gure (6) an in�nite number of times, it is clear that the Sierpinski gasket
exhibits �ne structure at arbitrarily small scales. The Sierpinski gasket is clearly
self similar since it is constructed from three smaller Sierpinski gaskets that are
exact miniature versions of the original gasket. The three smaller Sierpinski
gaskets are in turn constructed from three smaller Sierpinski gaskets each and
so on.

4.3 The Fractal Dimension

Fractals as I shall exemplify shortly, push the intuitive notion of dimension
beyond its naive use. Consider for example an equilateral triangle, which we
often think of as two dimensional, with side a. The area of such a triangle is
S =

√
3a2

4 , the length of its perimeter is L = 3a. The properties of non zero area
and �nite perimeter length appear very natural. Indeed, many two dimensional
geometrical objects such as the disk and square exhibit them, the Sierpinski
gasket on the other hand does not.

Recall the construction of the Sierpinski gasket and assume we start with
an equilateral triangle of side a. The area of the geometrical object obtained
after the n-th recursive stage is Sn =

√
3a2

4 ·
[

3
4

]n
. The area of the Sierpinski

gasket is the limit of Sn as n tends to in�nity, we hence conclude that this area
is zero ! The perimeter length of the geometrical object obtained after the n-th
recursive stage is Ln = 3a ·

[
3
2

]n
. The perimeter length of the Sierpinski gasket

is the limit of Ln as n tends to in�nity, we hence conclude that this length is
in�nite ! What is the dimensionality of the Sierpinski gasket then ? Is it a two
dimensional object with zero area or a bounded one dimensional object with
in�nite length ? The answer to this question depends on the de�nition of the
ambiguous term: �dimension�.

Suppose that a fractal consists of N identical parts that are similar to the
entire fractal with a scale factor of L, is there a relation between N and L ?
Figure (7) shows that for the Sierpinski gasket such a relation exists, indeed for
this fractal object: N = Lln(3)/ln(2). Similarly for a general fractal, we de�ne
the fractal dimension df to be the exponent of L in the power law relation
between N and L. From this de�nition it follows that the fractal dimension
of the Sierpinski gasket is df = ln(3)

ln(2) ' 1.585. For a regular two dimensional
object df = 2, as the example in the caption of �gure (7) illustrates, which
coincides with the regular dimension. Thede�nition of the fractal dimension
may be generalized as follows: In a two dimensional example, draw a circle of
radius r enclosing some lattice points in space and calculate the number of points
enclosed by this circle n(r), increase r and calculate again. Do this several times
and if n(r) scales as rdf the exponent df is called the fractal dimension. For a
regular lattice df coincide with the usual dimension of 2 in our example. The
fractal dimension of the Sierpinski gasket is independent of the way we calculate
it and remains ln(3)

ln(2) .
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4.4 The Spectral Dimension 4 FRACTALS

Figure 7: Starting with the small Sierpinski gasket on the left and treating
it as a basic unit, N denotes the number of basic units required to construct
each of the gaskets above. L denotes the scale factor between the side of the
basic building block and the side of the gaskets above. Noting that in the n-th
stage N = 3n and L = 2n, one may verify that N = Lln(3)/ln(2) by taking the
natural logarithm of both sides. Note that if we would have done so with a
regular equilateral triangle instead of a Sierpinski gasket, we would come to the
conclusion that in the n-th stage N = 4n and L = 2n. In this case it is clear
that N = L2.

4.4 The Spectral Dimension

Consider a general elastic network of masses and harmonic springs, it is well
known that one of the characteristics of such a network is a set of normal modes
and a corresponding set of eigenfrequencies. A normal mode of an oscillating
system is a pattern of motion in which all parts of the system move sinusoidally
with the same frequency. The frequencies of the normal modes of a system are
known as its natural frequencies or eigenfrequencies. Figure (8) describes two
di�erent elastic networks of masses and springs.

The spectral dimension ds governs the density of low frequency normal modes
on a fractal. More precisely, denoting the density of modes with frequency ω :
g (ω), the scaling relation g (ω) ∼ ωds−1 holds for low frequencies1. The spectral
dimension ds is hence a quantity directly related to the vibrational dynamics of
a fractal. It is well known that for an in�nite regular square lattice the spectral
dimension coincide with the regular dimension of 2. However, the spectral
dimension of the Sierpinski gasket is smaller than 2 and is given by 2ln(3)

ln(5) '
1.365[18, 19]. Figure (9) describes the spectral analysis of a �nite Sierpinski
gasket with 9842 nodes (green) and a 99× 99 regular square lattice (magenta).
These �nite networks serve as numeric approximations for the in�nite networks.

1A related quantity is G (ω), the cumulative density of states de�ned as G (ω) =
ώ

0

g(ω′)dω′.

G (ω) counts the number of modes with frequency less than ω. The scaling relation G (ω) ∼
ωds holds for low frequencies.
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4.4 The Spectral Dimension 4 FRACTALS

Figure 8: Two di�erent elastic networks of masses and springs. Left - A regular
square lattice as an elastic network, every node is connected with springs to
its nearest neighbors. Right - The Sierpinski gasket as an elastic network, the
nodes here are the vertices of the original gasket at each recursive step.

Figure 9: Spectral analysis of two �nite elastic networks. For each elastic net-
work, we found the set of vibrational eigenfrequencies {ω0, ω1, ..., ωN−1} that
characterize it and then plotted Ln(G (ω)) vs. Ln(ω). Low frequency regions
of the cumulative density of modes G (ω) clearly exhibit a power law behavior.
Dashed lines indicate best �ts to these regions, the slopes correspond to the
spectral dimension, it is clearly visible that dsquares > dgaskets . Numerical values
are dsquares = 1.943 and dgaskets = 1.366, these values agree with the theoretical
values for the corresponding in�nite networks.
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5 THE GAUSSIAN NETWORK MODEL

5 The Gaussian Network Model

With recent advances in sequencing genomes, it has become clear that the canon-
ical sequence-to-function paradigm is far from being su�cient. Structure has
emerged as an important source of additional information required for under-
standing the molecular basis of observed biological activities. Yet, advances in
structural genomics have now demonstrated that structural knowledge is not
su�cient for understanding the molecular mechanisms of biological function
either. The connection between structure and function presumably lies in dy-
namics, suggesting an encoding paradigm of sequence to structure to dynamics
to function.

Not surprisingly, a major endeavor in recent years has been to develop models
and methods for simulating the dynamics of proteins, and relating the observed
behavior to experimental data. These e�orts have been largely impeded, how-
ever, by the memory and time cost of molecular dynamics simulations. These
limitations are particularly prohibitive when simulating the dynamics of large
structures or supramolecular assemblies.

While accurate sampling of the conformational space is a challenge for macro-
molecular systems, the study of protein dynamics bene�ts from a great simpli-
�cation. Proteins have uniquely de�ned native structures under physiological
conditions and they are functional only when folded into their native confor-
mation. Therefore, while the motions of macromolecules in solution are quite
complex and involve transitions between an astronomical number of conforma-
tions, those of proteins near native state conditions are much simpler, as they
are con�ned to a subset of conformations near the folded state. These con-
formations usually share the same overall fold, secondary structural elements,
and even tertiary contacts within individual domains. Typical examples are
the open and closed forms of enzymes, usually adopted in the unliganded and
liganded states, respectively.

Exploring the �uctuation dynamics of proteins near native state conditions
is a �rst step toward gaining insights about the molecular basis and mechanisms
of their function; and �uctuation dynamics can be treated to a good approxi-
mation by linear models such as Normal Mode Analysis (NMA)[20]. Another
distinguishable property of protein dynamics, in addition to con�nement to a
small subspace of conformations, is the collective nature of residue �uctuations.
The �uctuations are indeed far from random, involving the correlated motions
of large groups of atoms, residues, or even entire domains or molecules whose
concerted movements underlie biological function. An analytical approach that
takes account of the collective coupling between all residues is needed, and again
NMA emerges as a reasonable �rst approximation.

18



5.1 The Model 5 THE GAUSSIAN NETWORK MODEL

5.1 The Model

Most analytical treatments of protein dynamics entail a compromise between
physical realism and mathematical simplicity. The challenge is to identify a
simple, yet physically plausible, model that retains properties of interest and ex-
perimental relevance[21]. As follows from the previous section, the dynamics of
proteins revolves around and near their native state. As in numerous other cases
in physics, the dynamics of a system near its energetic minima may be studied
using an harmonic approximation. The Gaussian Network Model (GNM) pro-
posed by Bahar et al[22], utilizes such an approximation and is widely applied
because it yields results in agreement with X-ray spectroscopy experiments. Its
main aim is to help explore the role and contribution of purely topological con-
straints, de�ned by the 3D structure, on the collective dynamics of proteins.
The GNM considers proteins to be elastic networks whose nodes correspond to
the positions of the alpha-carbons in the native structure and the interactions
among nodes are modeled as harmonic springs taken to be homogeneous. An
interaction between two nodes exists if the nodes are separated by a distance
less than Rc that is known as the interaction cuto�. The cuto� distance is usu-

ally taken in the range 6
◦
A − 7

◦
A, based on the radius of the �rst coordination

shell around residues observed in PDB structures[23, 24]. The only information
required to implement the method is knowledge of the native structure. Figure
(10)[20] is an illustrative description of the GNM.

The GNM is de�ned by the quadratic Hamiltonian equation

HGNM=
∑
i

(
−→
Pi)2

2M
+
γ

2

∑
i,j>i

∆ij(4
−→
Ri −4

−→
Rj)2. (2)

The �rst term represents the kinetic energy of the system, γ is the spring force
constant which is assumed to be homogeneous,

−→
Ri and 4

−→
Ri are the instanta-

neous position and the displacement with respect to
−→
R0
i of the i-th Cα atom

respectively. ∆ is the network connectivity matrix with the following entries:
∆ij = 1 if i 6= j and the distance

∣∣∣−→Ri −−→Rj∣∣∣ between the two Cα atoms, in
the native conformation, is below the cuto� Rc, ∆ij = 0 otherwise. Physically,
this means that in addition to changes in inter-residue distances, any change
in the direction of the inter-residue vector is also being resisted or penalized
in the GNM potential. The GNM makes two assumptions, as implied by the
Hamiltonian, �uctuations are isotropic and Gaussian.

5.2 Classical Mechanics

As in every mechanical system of masses and harmonic springs also in the GNM
elastic network, the normal modes and eigenfrequencies are of prime interest. A
simple analysis of the elastic network created with the GNM is readily preformed
using Lagrangian mechanics (Hamiltonian mechanics will of course yield the
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Figure 10: Description of the GNM. (a) Schematic representation of the equilib-
rium positions of the i-th and j-th nodes, ~R0

i and
~R0
j with respect to a laboratory-

�xed coordinate system (xyz). ~R0
ij is the equilibrium separation vector between

nodes i and j. The instantaneous �uctuation vectors, ∆ ~Ri and ∆ ~Rj , are shown
by the dashed arrows, along with the instantaneous separation vector ~Rij be-
tween the positions of the two residues. (b) In the elastic network of the GNM
every residue is represented by a node and connected to spatial neighbors by
uniform springs. These springs determine the degrees of freedom in the network
and the structure's modes of vibration. (c) Three dimensional image of hen egg
white lysozyme (PDB code 1hel) showing the C-alpha trace, secondary structure
features are also indicated. (d) Using a cuto� value of choice, all connections
between C-alpha nodes are drawn for the same lysozyme structure to indicate
the nature of the elastic network analyzed by the GNM.
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5.2 Classical Mechanics 5 THE GAUSSIAN NETWORK MODEL

same results). The classical Lagrangian of the GNM elastic network can be
written as:

L =
∑
i

M(
−̇→
Ri)2

2
− γ

2

∑
i,j>i

∆ij(4
−→
Ri −4

−→
Rj)2 . (3)

Written in a less compact form:

L =
∑
i

M4Ẋi
2

2
+
M4Ẏi

2

2
+
M4Żi

2

2
−
γ

2

∑
i,j>i

∆ij
[
(4Xi −4Xj)2 + (4Yi −4Yj)2 + (4Zi −4Zj)2

]
, (4)

it is clear that this Lagrangian is three times degenerate and separable into the
variables: 4Xi,4Yi,4Zi. It is hence su�ce to concentrate on:

L =
∑
i

M4Ẋi
2

2
− γ

2

∑
i,j>i

∆ij(4Xi −4Xj)2 . (5)

To continue further we �rst note that:∑
i,j>i

∆ij(4Xi−4Xj)2 =
∑
i,j>i

∆ij(4X2
i −24Xi4Xj +4X2

j ) =
∑
i,j

Γij4Xi4Xj , (6)

where the matrix Γ is de�ned as follows :

Γij =


−1 if i 6= j andR0

ij ≤ Rc
0 if i 6= j andR0

ij > Rc∑
k

∆ik if i = j .
(7)

We can hence write the Lagrangian in the following form:

L =
∑
i

M4Ẋi
2

2
− γ

2

∑
i,j

Γij4Xi4Xj . (8)

Recalling the Euler Lagrange equations of motion ( ∂L
∂4Xi = ∂

∂t
∂L

∂4Ẋi
) we get an

equation for every index i:

M4Ẍi = −γ
∑
j

Γij4Xj . (9)

This set of N equations can be written in matrix form:

M4 ~̈X = −γΓ4 ~X . (10)

Substituting an oscillatory solution,4 ~X = ~Aeiωt , we get an eigenvalue equation
for the matrix Γ:

Γ ~A =
Mω2

γ
~A . (11)

We may conclude that the eigenfrequencies of the this elastic network are, up
to a proportionality factor, the square root of the eigenvalues of the matrix Γ.
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5.3 Relevance

One may wonder, to what extent
Figure 11: Theoretically calculated vs.
experimentally measured B-factors for
four di�erent proteins.

is the GNM a reliable description of
protein dynamics ? The mean square
�uctuation of a residue from its equi-
librium position is experimentally mea-
surable. In X-ray crystallography this
quantity is directly related to mea-
surable B-factors and in NMR experi-
ments this quantity is simply the root
mean-square di�erence between dif-
ferent NMR models.

GNM allows us to theoretically cal-
culate the mean square �uctuation of
every residue. A thermodynamic anal-
ysis of GNM[22] provides us with a
formula for the theoretical value of
the experimentally measurable B-factors
mentioned above:

Bi ≡
8π2

3

〈
(∆
−→
Ri)2

〉
=

8π2kBT

γ

[
Γ−1

]
ii
,

where the subscript i stands for the
i − th residue. It is thus possible to
compare between theoretical and ex-
perimental results.

Starting with the paper that in-
troduced the GNM[22], several stud-
ies have demonstrated that the �uc-
tuations predicted by the GNM are in good agreement with experimental B-
factors. Figure (11)[22] shows a comparison between theoretically calculated
and experimentally measured B-factors for four proteins, PDB codes (a) 3lzm,
(b) 1ula, (c) 1omf and (d) 1atna. Curves shown in bold were obtained utilizing
the GNM, curves drawn as thin lines represent experimental data. It is interest-
ing to note that in a recent study[25] conducted on a set of 64 nonhomologous
proteins, each containing a structure solved by NMR and X-ray crystallography.
The GNM predictions for mean square �uctuation yielded a correlation of 0.59
with X-ray data and a distinctively better correlation (0.75) with NMR data.
The higher correlation between GNM and NMR data, compared to that between
GNM and X-ray B factors, was shown to arise from the di�erences in the spec-
trum of modes accessible in solution and in the crystal environment. Mainly,
large amplitude motions sampled in solution are restricted, if not inaccessible,
in the crystalline environment of X-rays.
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6 Proteins as Fractal Entities

Proteins are not the abstract mathematical objects, described in chapter 4,
known as fractals. Recently however, it turned out that proteins may be re-
garded, at least in some aspects, as fractals[3, 4, 5]. As recent studies show,
one may attribute at least two �fractal� dimensions to proteins, the mass fractal
dimension df and the spectral dimension ds. These parameters, in addition to
the number of amino acids along the protein backbone, sum up essential in-
formation regarding the topology of a protein and its basic dynamics. From
reasons to become clear in chapters 7 and 8, we were required to calculate df
and ds simultaneously for a large number of proteins. The task presented a
challenge since such a large scale analysis has never been conducted before and
because it requires the development and implementation of �home made� calcu-
lation methods.

In this chapter I de�ne and describe the terms: mass fractal dimension
and spectral dimension. I also describe practical calculation methods for these
dimensions given the 3D structure of a protein. By implementing the methods
described in this chapter we were able to calculate the spectral and fractal
dimensions for a data set of 543 protein structures all taken from the Protein
Data Bank (PDB). The proteins that were chosen di�er in function and/or
source organism and represent a wide length scale ranging from 100 to 3000
residues. The results of our calculations are summarized in appendix D.

6.1 The Mass Fractal Dimension

The mass fractal dimension df , gives us an indication of how completely a
fractal/protein �ll space. Describing the mass fractal dimension df is most
convenient using a three dimensional example. Draw a sphere of radius r en-
closing some lattice points in space and calculate their mass M(r), increase r
and calculate again. Do this several times and if M(r) scales as rdf the expo-
nent df is called the fractal dimension. Leitner et al preformed a large scale
analysis of the mass fractal dimension in proteins, calculating the fractal dimen-
sion for 200 proteins[3]. It has been found that proteins can be described as
mass fractals whose mass fractal dimension df is close to 2.5 (with a statistical
standard deviation of about 0.2). For a regular 3D lattice df coincide with
the usual dimension of 3, for proteins however 2 < df < 3, leading to sparser
�ll of space. Our calculations on a larger set of proteins assert these conclusions.

Although the de�nition of the fractal dimension is rather simple, while trying
to develop a numerical method for calculating the fractal dimension in proteins,
we encountered a few questions: How does one choose the origin for the sphere
mentioned above ? Should one average the calculations over several origins ?
Since proteins are �nite objects, unlike exact fractals, how does one choose lower
and upper cuto�s for r ? Through a process of trial and error we have devised
a reasonable algorithm for calculating the fractal dimension of a protein. The
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6.2 The Spectral Dimension 6 PROTEINS AS FRACTAL ENTITIES

algorithm was implemented in MATLAB2; the MATLAB code appears in ap-
pendix A, the algorithm is described below.

We used the following algorithm in order to calculate the fractal dimension
of a protein:

1. Find the protein's center of mass.

2. Compute the protein's radius of gyration Rg[26], a characteristic length
scale, given by:

Rg =

√√√√√
∑
i

mir2
i∑

i

mi

where the sum is over each atom i of mass mi and distance ri from the center
of mass.

3. Find the ten C-Alpha atoms closest to the center of mass.

4. For every C-Alpha in (3), set it as origin and linearly �t log(M(r)) against

log(r) when r = 1
◦
A, 2

◦
A, ....., round(Rg)

◦
A.

5. The mass fractal dimension df is the average over the ten slopes obtained in
step 4, Figure (12) illustrates the procedure.

6.2 The Spectral Dimension

The GNM models a protein as an elastic network. As was mentioned in chapter
5, the normal modes and eigenfrequencies of such a system are of prime interest.
The spectral dimension ds governs the density of low frequency normal modes
on a fractal/protein, we will focus our attention on the behavior of this subset.
More precisely, denoting the density of modes with frequency ω : g (ω), the
scaling relation g (ω) ∼ ωds−1 holds for low frequencies. The spectral dimension
ds is hence a quantity directly related to the vibrational dynamics of a frac-
tal/protein. Vulpiani et al[4] computed the spectral dimension, for a set of 57
proteins, within the GNM framework. It was found that low frequency regions
clearly exhibit a power-law behavior and that usually ds < 2 although higher
values of the interaction cuto� Rc lead to higher values of ds. For a regular 3D
lattice ds coincide with the usual dimension of 3, for proteins however ds < 2,
leading to an excess of low frequency modes. Our calculations on a much larger
set of proteins assert these conclusions.

In order to calculate ds we �rst built the matrix Γ de�ned in chapter 5
for every protein we studied. We have done so for two di�erent values of Rc:

2I used MATLAB 2007a with the corresponding bioinformatics toolbox.
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Figure 12: Calculating the mass fractal dimension df for PDB code 1V97 (N =
2594,df = 2.64), df was taken to be the average mass fractal dimension obtained
by choosing the origin to be each and every one of the ten C-Alpha atoms closest
the protein's center of mass. For a given origin, df was estimated via a power
law �tting toM(r), dashed lines indicate best �ts, the average slope correspond
to the fractal dimension.

Figure 13: Calculating the spectral dimension ds for three proteins with di�erent
sizes, PDB codes: 1V97 (N = 2594,ds = 2.09), 1E7U (N = 872,ds = 1.86) and
1VPD (N = 279,ds = 1.68). For each protein, we found the set of vibrational
eigenfrequencies {ω0, ω1, ..., ωN−1} that characterize the elastic network it forms
when modeled by the GNM and plotted Ln(G (ω)) vs. Ln(ω). In this example
Rc = 7Å. Low frequency regions ofG (ω) clearly exhibit a power law behavior, i.e
the scaling relation G (ω) ∼ ωds holds for low frequencies. Dashed lines indicate
best �ts to these regions, the slopes correspond to the spectral dimension.
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6
◦
A and 7

◦
A, as in Vulpiani et al[4]. The set of vibrational eigenfrequencies

{ω0, ω1, ..., ωN−1} was then obtained by diagonalizing the matrix Γ3. These two
steps were implemented in MATLAB4 and hence automated, the MATLAB code
appears in appendix B. Creating a plot of Ln(G (ω)) vs. Ln(ω), where G (ω)
is the cumulative density of states, one �nds that the low frequency section
behaves linearly. Manual inspection of the plot is required in order to determine
the boundaries of the linear section. The slop of this line is actually the spectral
dimension ds and is determined via �tting. Figure (13) illustrates the procedure
by showing a plot of Ln(G (ω)) vs. Ln(ω) for three di�erent proteins.

6.2.1 The Boson Peak in Proteins

The Boson Peak is formally de�ned as the low frequency peak in the function
g (ω) /gD (ω), where g (ω) is the vibrational density of states and gD (ω) ∝ ω2

is the Debye behavior for low frequencies. A peak in this function would then
represent an excess of low vibrational modes with respect to a perfect harmonic
crystal. The Boson Peak is one of the most striking properties of glasses[27],
recent experimental and theoretical studies imply that the Boson Peak appears
in proteins as well[4, 5, 28]. Since in proteins we �nd that ds− 1 < 2, our study
asserts this conclusion.

3The eigenfrequencies of the the elastic network are, up to a scale factor, the square root of
the eigenvalues of the matrix Γ. One should not be bothered with the proportionality factor
since we are only interested in the scaling law of g (ω) with ω.

4I used MATLAB 2007a with the corresponding bioinformatics toolbox.
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7 Thermal Instability

A classical result obtained by Peierls in 1934[9] provides a thermodynamic ex-
planation for the instability of low dimensional crystalline structures. The ar-
gument, based on harmonic vibrational dynamics, shows that the mean square
displacement of any structural unit at �nite temperature diverges in the ther-
modynamic limit when the lattice dimension is 1 or 2. Indeed, when such a
quantity exceeds the order of magnitude of the lattice spacing, the structure
behaves as a liquid and the crystalline order makes no longer sense. Even if an-
harmonic terms are usually present in real structures, the result of Peierls still
holds since the instability is present at any �nite temperature and in particular
in the low-temperature regime where the harmonic approximation is correct.
On the other hand, on real �nite structures far from the thermodynamic limit,
the crystalline order is stable if the mean-square displacement does not exceed
the lattice spacing. The maximum stability size at room temperature is so small
for d = 1 that it make no sense speaking of 1-dimensional crystals, while for
d = 2 the logarithmic divergence is slow enough to allow the existence of small
�nite 2-dimensional crystals.

In this section I will describe a generalization of the Peierls result for a generic
fractal elastic network described by the GNM[8]. The general result extends
the Peierls theorem for non crystalline structures, proving that stability in the
thermodynamic limit is possible if and only if ds > 2. In particular, in light of
chapter six, this generalization applies for proteins. It will be shown in chapter
eight how this result combined with an appropriate melting criterion leads to a
general equation relating the spectral and fractal dimensions of a protein to the
number of amino acids along the protein backbone.

7.1 The GNM in Normal Coordinates

As was described in chapter 5, in GNM the dynamics of an elastic network is
fully described by the following set of equations:

M4Ẍi = −γ
∑
j

Γij4Xj , (12)

or in matrix form:
M4 ~̈X = −γΓ4 ~X . (13)

A brief look at these equations reveals that they are coupled. The dynamics of
the i-th node, described by the deviation from equilibrium 4Xi, depends not
only on 4Xi itself but also on other nodes {4Xj}. Although the above descrip-
tion is very natural, since the coordinates used are the actual deviations from
equilibrium, it leads to a rather complicated set of equations. It is sometimes
bene�cial to describe the system di�erently using a special set of coordinates
called normal coordinates. Describing the system with normal coordinates leads
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to N uncoupled equations of motion and great mathematical simplicity.

The matrix Γ de�ned in chapter 5 is real and symmetric5 by de�nition. One
of the basic theorems concerning such matrices is the �nite-dimensional spectral
theorem, which says that any symmetric matrix whose entries are real can be
diagonalized by an orthogonal matrix6. More explicitly: to every symmetric real
matrix Γ there exists a real orthogonal matrix A such thatD = A−1ΓA ≡ ATΓA
is a diagonal matrix. Every symmetric matrix is thus, up to choice of an or-
thonormal basis, a diagonal matrix. Another way of stating the real spectral
theorem is that the eigenvectors of a symmetric matrix are orthogonal. More
precisely, a matrix is symmetric if and only if it has an orthonormal basis of
eigenvectors.

Letting A be the real orthogonal matrix that diagonalizes the matrix Γ. We
de�ne a new set of coordinates {4Ui} using the old set of coordinates {4Xi}
by the orthogonal transformation:

4 ~X = A4~U . (14)

We are now able to obtain the equations of motion for the new coordinates

{4Ui}, since A4 ~̈U = 4 ~̈X = − γ
M Γ4 ~X = − γ

M ΓA4~U we get:

4 ~̈U = − γ

M
A−1ΓA4~U = − γ

M
D4~U , (15)

where D is a diagonal matrix whose entries are the eigenvalues of the matrix Γ,
i.e the set

{
M
γ ω

2
i

}
. As promised we got a set of N uncoupled equations, more

explicitly the equation of motion for 4Ui is given by:

4Üi = −ω2
i4Ui. (16)

4Ui thus obey the equation of motion for a simple harmonic oscillator with
angular frequency ωi.

7.2 Thermal Averages

In order to discuss stability, we would �rst like to obtain an expression for the
mean square displacement of the elastic network which de�ned by:

< 4~R2 >=

∑
i

< 4X2
i > + < 4Y 2

i > + < 4Z2
i >

N
, (17)

5In linear algebra, a symmetric matrix is a square matrix Γ, that is equal to its transpose
Γ = ΓT . The entries of a symmetric matrix are symmetric with respect to the main diagonal
(top left to bottom right), so if the entries are written as aij , then aij = aji.

6In matrix theory, a real orthogonal matrix is a square matrix A whose transpose is its
inverse: AT A = AAT = I. A real square matrix is orthogonal if and only if its columns form
an orthonormal basis of the Euclidean space Rn with the ordinary Euclidean dot product,
which is the case if and only if its rows form an orthonormal basis of Rn.
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here the pointy brackets denote the thermal average. The GNM however is
three times degenerate and hence in the GNM:

< 4~R2 >=
3
∑
i

< 4X2
i >

N
. (18)

As was mentioned in chapter 5, it is possible to calculate the thermal averages

written on the r.h.s directly and obtain: < 4~R2 >=
3kBT

∑
i
[Γ−1]

ii

γN . Here how-
ever, we follow an indirect path leading to an equivalent result that will be of
great use to us.

We �rst note that:

∑
i

< 4X2
i >=

∑
i

<

[∑
j

Aij4Uj

]2

>=<
∑

i

∑
j

∑
k

AijAik4Uj4Uk > (19)

=<
∑

j

∑
k

∑
i

AijAik4Uj4Uk >=<
∑

j

∑
k

δjk4Uj4Uk >=
∑

j

< 4U2
j > ,

where we have used the fact that the columns of the matrix A are orthonormal.
Calculating the thermal average < 4U2

i > is easy, since it is nothing but the
mean square displacement of a simple harmonic oscillator in thermal equilib-
rium. After factoring out the integration over momenta, < 4U2

i > is given
by:

< 4U2
i >=

∞́

−∞
4U2

i e
−Mω

2
i4U

2
i

2kBT d4Ui

∞́

−∞
e
−
Mω2

i
4U2

i
2kBT d4Ui

=
kBT

Mω2
i

=
kBT

γli
, (20)

where li denotes the i-th eigenvalue of the matrix Γ and γ is the GNM spring
constant. Denoting the density of eigenvalues of the matrix Γ: g(l), we replace
summation with integration and obtain:

< 4~R2 >=
3kBT
Nγ

lmaxˆ

lmin>0

g(l)
l
dl , (21)

where lmin denotes the smallest positive eigenvalue and lmax the largest.

29



7.3 Stability and Instability 7 THERMAL INSTABILITY

7.3 Stability and Instability

In order to evaluate < 4~R2 > in the thermodynamic limit, N → ∞, we must
�rst say something about the scaling properties of g(l) and lmin in this limit.
First, we note that g(l) is an extensive quantity and hence scales with N , this

can also be understood from the normalization condition
lmax´
lmin>0

g(l)dl = N .

Second, as was mentioned in chapter 6 the spectral dimension ds governs the
density of low frequency normal modes on a fractal/protein. More precisely,
denoting the density of modes with frequency ω : g (ω), the scaling relation
g (ω) ∼ ωds−1 holds for low frequencies. Since l v ω2 we deduce that the
scaling relation g (l) ∼ l

ds−2
2 also holds for low eigenvalues. Third, the low-

est positive eigenfrequency ωmin corresponds to the lowest wave number kmin.
The lowest wave number possible is limited by the size of the elastic network
kmin ∼ 1

Rg
∼ 1

N1/df
7, using the known dispersion relation for fractals[18]

ω ∼ k
df
ds , we conclude that lmin ∼ ω2

min ∼ k
2df
ds
min ∼ N

− 2
ds .

The above scaling relations allow us to compute the value of < 4~R2 > and
�nd that it is indeed related to the spectral dimension:

< 4~R2 >∼
kBT

γ
N

2
ds
−1 + const , (22)

which for N →∞ is �nite when ds > 2 and diverges when ds ≤ 2.8 As promised
this result extends the Peierls theorem for non crystalline structures, proving
that stability in the thermodynamic limit is possible if and only if ds > 2.

7The radius of gyration Rg , is a characteristic length scale de�ned in chapter 6.
8For ds = 2 one must recalculate the integral and �nd that the divergence is actually

logarithmic.
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8 Unraveling Universality

Two seemingly con�icting properties of native proteins, such as enzymes and
antibodies, are known to coexist. While proteins need to keep their speci�c
native fold structure thermally stable, the native fold displays the ability to
perform large amplitude motions that allow proper function[1, 2]. This con�ict
cannot be bridged by compact objects which are characterized by small am-
plitude vibrations and by a Debye density of low frequency modes. Recently,
however, it became clear that proteins can be described as fractals; namely, ge-
ometrical objects that possess self similarity[3, 4, 5]. Adopting the fractal point
of view to proteins makes it possible to describe within the same framework
essential information regarding topology and dynamics[6, 7] using three param-
eters: the number of amino acids along the protein backbone N , the spectral
dimension ds and the fractal dimension df . The fractal character implies large
amplitude vibrations of the protein that could have led to unfolding. We show
that by selecting a thermodynamic state that is �close� to the edge of stability
against unfolding, nature has solved the thermostability con�ict. Starting o�
from a thermal marginal stability criterion we reach a universal equation de-
scribing the relation between the spectral and fractal dimensions of a protein
and the number of amino acids. This equation is obeyed by a large class of pro-
teins regardless of their source or function. We suggest that deviations from this
�equation of state� for protein topology may render a protein unfolded. Nature's
solution might be incorporated when planning biologically inspired catalysts.

Based on a generalization[8] of the Peierls instability criterion[9], we derive
a general relation between the spectral dimension ds, the fractal dimension df
and the number of amino acids along the protein backbone:

2
ds

+
1
df

= 1 +
b

ln(N)
. (23)

The spectral dimension ds governs the density of low frequency normal modes of
a fractal/protein. More precisely, denoting the density of modes g (ω), the scal-
ing relation g (ω) ∼ ωds−1 holds for low frequencies. Describing the mass fractal
dimension df is most convenient using a three dimensional example. Draw a
sphere of radius r enclosing some lattice points in space and calculate their mass
M(r), increase r and calculate again. Do this several times and if M(r) scales
as rdf the exponent df is called the fractal dimension. For a regular 3D lattice
both ds and df coincide with the usual dimension of 3. For proteins however,
it is usually found that ds < 2 and 2 < df < 3, leading to an excess of low
frequency modes and a more sparse �ll of space[3, 4].

8.1 The Underlying Physics

As was described in chapter 7, thermodynamic instability appears in inhomo-
geneous structures and is determined by the spectral dimension ds. It was
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demonstrated that for ds ≤ 2, the mean square displacement < 4~R2 > of a
structural unit (in the GNM a single amino acid) in a system composed of N
elements, diverges in the limit N →∞. In particular the mean square displace-
ment in proteins, where we usually �nd ds ≤ 2, diverges in the thermodynamic
limit. Here it will be shown that as a result of this divergence, the topological
parameters describing a native protein fold are forced to obey a certain relation.

Using T to represent the temperature of the solvent, kB the Boltzmann
constant and γ the spring constant in the GNM, the divergence is given by the
asymptotic law

< 4~R2 >∼
kBT

γ
N

2
ds
−1 . (24)

Letting p be the ratio between the number of surface residues and the total
number of residues in a protein and q = 1− p we write:

< 4~R2 >total= p < 4~R2 >Surface + q < 4~R2 >Bulk . (25)

At very low temperatures the Mean Square Displacements (MSD) of surface
residues and of bulk residues are of the same order of magnitude. As tempera-
ture increases, MSD values grow and since surface residues are the ones prone
to interactions with the solvent, it is reasonable to assume that melting starts
when MSD values of surface residues reach a certain threshold to be denoted:
< 4~R2

melting >Surface.

Equation (25) holds for every N , hence both terms on the r.h.s must scale as
the l.h.s, i.e as in equation (24). We note that the mass enclosed by a sphere of
radius r is approximately proportional to the number of residues n(r) enclosed
by the same sphere and hence n(r) ∝ M(r) ∝ rdf . Now, since by de�nition p is
directly proportional to the surface to volume ratio of a protein we obtain:

p ∝ S

V
∝ 1
Rg
∝ 1
N1/df

, (26)

where Rg is the gyration radius of the protein[26]. Letting Tm represent the
melting temperature and utilizing the scaling law:

kBT

γ
N

2
ds
−1 ∼ p < 4~R2

melting >Surface∼ N−1/df < 4~R2
melting >Surface , (27)

we obtain the following approximation:

< 4~R2
melting >Surface ∼

kBTm
γ

N
2
ds

+ 1
df
−1

. (28)

Rearrangement leads to equation (23), where the constant b depends on the pro-
portionality constant between p and S

V , the spring elastic constant γ, the MSD
melting threshold < 4~R2

melting >Surface and the melting temperature Tm. This
dependence, however, is logarithmic and thus very weak, allowing comparison
between di�erent proteins without computation of the speci�c parameters.
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8.2 Validity and Robustness

8.2.1 Validation

In order to test the validity of equation (23), we used our calculations of the
spectral and fractal dimensions for a data set of 543 proteins. The results of
our calculations are summarized in appendix D, calculation methods for df and
ds were described in chapter 6. Calculations were preformed on known protein
structures, all structures were downloaded from the Protein Data Bank (PDB).
The proteins that were chosen di�er in function and/or source organism and
represent a wide length scale ranging from 100 to 3000 residues.

Statistical analysis of the data gathered reveals satisfying agreement with
equation (23). Fitting our data with equation (23) yields the following best-�t

parameters: b = 2.80 for Rc = 7
◦
A and b = 3.97 for a slightly di�erent cuto�

Rc = 6
◦
A. Despite the diversity in the sample data both cases yield signi�cant

correlation coe�cients, 0.64 for Rc = 7
◦
A and 0.55 for Rc = 6

◦
A. Testing the

validity of our predictions further, we tried �tting the data with the equation:
2
ds

+ 1
df

= a+ b
ln(N) . The results for Rc = 7

◦
A and Rc = 6

◦
A are shown in �gure

(14) and (15) respectively. Allowing a free constant �tting parameter enabled
us to confront theory with practice since our prediction was a = 1. Finding the
observed value of the constant �tting parameter was also important, since in a
previous study a similar relation between N and ds was suggested and tested
on a small set of proteins[4]. In that study a peculiar o�set in the observed
value of a constant �tting parameter predicted to be exactly 1 was reported.
We believe to have explained the reason for this o�set and by doing so we were
led to equation (23).The results shown in �gures (14) and (15) indicate that the
observed value of the �tting parameter ′a′ is indeed close to one.

We also checked the validity of equation (23) for proteins all originated from
the same creature. We thus �sliced� the data according to various sources (Hu-
man, E.coli etc...) in order to gain further insight on the relation between the
source organism and the �tting parameters. The results of this analysis are
summarized in table (1). Of special interest are proteins originating in hyper-
thermophiles. Surprisingly, such proteins that were included in the analyzed
data appear to ful�ll equation (23). We shall return and discuss hyperther-
mostable proteins in chapter 9.

8.2.2 Robustness

The vigilant reader might have noticed that the spectral dimension we have
calculated depends on the interaction cuto� Rc. For instance take PDB code:
1RFZ, a protein originated in Bacillus stearothermophilus. We have estimated

the spectral dimension of this protein to be 1.87 for Rc = 7
◦
A and 1.68 for

Rc = 6
◦
A. Moreover, in some cases the spectral dimension calculated for
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Source Proteins Rc a b c.c

All 543 7Ȧ 0.80± 0.06 4± 0.37 0.67

Mesophiles 432 7Ȧ 0.80± 0.06 3.98± 0.39 0.70

E.coli 40 7Ȧ 0.79± 0.17 3.95± 1.02 0.78

Bacillus subtilis 40 7Ȧ 0.71± 0.28 4.51± 1.66 0.66

Bos taurus ( Cow ) 36 7Ȧ 0.98± 0.18 2.90± 0.69 0.69

Homo sapiens ( Human ) 44 7Ȧ 0.94± 0.28 3.18± 1.66 0.51

Mus musculus ( Mouse ) 37 7Ȧ 0.88± 0.28 3.52± 1.57 0.61

Rattus norvegicus ( Rat ) 36 7Ȧ 0.92± 0.34 3.38± 1.95 0.51

Saccharomyces cerevisiae 38 7Ȧ 0.77± 0.31 4.29± 1.83 0.65

Salmonella typhimurium 28 7Ȧ 0.62± 0.22 5.17± 1.35 0.84

Hyperthermophiles 111 7Ȧ 0.80± 0.17 4.01± 1.02 0.60

Pyrococcus 44 7Ȧ 0.97± 0.25 2.84± 1.55 0.50

T.maritima 47 7Ȧ 0.75± 0.31 4.24± 1.81 0.57

A.aeolicus 20 7Ȧ 0.66± 0.35 5.04± 2.07 0.77

All 543 6Ȧ 0.90± 0.09 4.53± 0.57 0.55

Mesophiles 432 6Ȧ 0.91± 0.1 4.45± 0.61 0.57

E.coli 40 6Ȧ 1.05± 0.25 3.66± 1.53 0.62

Bacillus subtilis 40 6Ȧ 0.66± 0.42 6.01± 2.49 0.62

Bos taurus ( Cow ) 36 6Ȧ 1.00± 0.30 3.71± 1.79 0.59

Homo sapiens ( Human ) 44 6Ȧ 1.13± 0.43 3.21± 2.54 0.36

Mus musculus ( Mouse ) 37 6Ȧ 1.18± 0.40 3.11± 2.26 0.43

Rattus norvegicus ( Rat ) 36 6Ȧ 0.86± 0.47 5.12± 2.71 0.55

Saccharomyces cerevisiae 38 6Ȧ 0.81± 0.47 5.05± 2.78 0.55

Salmonella typhimurium 28 6Ȧ 0.59± 0.50 6.45± 3.08 0.64

Hyperthermophiles 111 6Ȧ 0.87± 0.25 4.80± 1.52 0.51

Pyrococcus 44 6Ȧ 0.99± 0.42 3.90± 2.57 0.42

T.maritima 49 6Ȧ 0.95± 0.46 4.46± 2.70 0.44

A.aeolicus 20 6Ȧ 0.73± 0.40 5.84± 2.36 0.77

Table 1: Fitting the data from various creatures with the equation : 2
ds

+ 1
df

=

a + b
ln(N) . It is apparent from table (1) that when allowing a constant �tting

parameter it's value remains close to one, this is true for both the set as a whole
and for the overwhelming majority of creatures we analyzed.
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Figure 14: Fitting the data calculated for Rc = 7.0
◦
A with the equation: 2

ds
+

1
df

= a+ b
ln(N) . The best �t parameters are a = 0.8 and b = 4, the correlation

coe�cient is 0.67. Prediction bounds are for a con�dence level of 95%. As
expected the observed value of the �tting parameter ′a′ is indeed close to one.

Rc = 7
◦
A is higher than 2, yet the spectral dimension calculated for Rc = 6

◦
A

is lower than 2. Since equation (23) was derived for proteins with ds < 2, one
may be bothered with this issue.

One way to solve the problem is to note that when choosing Rc = 6
◦
A, ds > 2

only for handful of proteins. It is certainly possible that this choice of the inter-
action cuto� is one more suitable for proteins. Another way is to keep in mind
that the GNM is a simple model, choosing reasonable values for Rc we have
used this model in order to approximate the spectral dimension for a large set
of proteins. It is certainly possible that our estimation for the spectral dimen-
sion ds is di�erent form the real/experimental spectral dimension d0

s. Yet since :
1
ds

= 1
d0
s+δds

' 1
d0
s
− δds

[d0
s]

2 , our errors translate to variance around the main trend
line and equation (23) still holds. It is also possible that although proteins with
a spectral dimension higher than 2, are not constrained by equation (23) they
nevertheless obey it. Given that the majority of proteins are characterized by a
spectral dimension lower than 2 and were hence designed by nature to fold into
native structures that obey equation (23). Equation (23) may have become a
�guideline� for the design of other proteins as well.
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Figure 15: Fitting the data calculated for Rc = 6.0
◦
A with the equation: 2

ds
+

1
df

= a+ b
ln(N) . The best �t parameters are a = 0.9 and b = 4.53, the correlation

coe�cient is 0.55. Prediction bounds are for a con�dence level of 95%. As
expected the observed value of the �tting parameter ′a′ is indeed close to one.

Last but not least, here is the place to mention that another approach lead-
ing to relation (23) is described in appendix C. This approach introduces a
non-Lindeman melting criterion used mainly for polymers and a bond bending
Hamiltonian rather than the GNM Hamiltonian. The bond bending Hamilto-
nian, previously studied in percolation, describes the harmonic energy penalty
associated with changing the bond angles between nodes on the network in ad-
dition to the stretch-compress penalty described by harmonic springs. In this
approach the derivation of equation (23) is not limited by the demand for ds < 2.
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9 Towards Biological Relevance

Striving towards biological relevance, we sought for links between the fractal
description of proteins and conventional biology. This part of the work has
been more than challenging and I can humbly say that despite relentless e�orts
our success here has been limited. In the following subsections I will review
aspects of our work that were not reviewed in previous chapters. I will present
some questions but unfortunately much fewer answers. I believe that some of
the work described here may lead to further discoveries and provide a deeper
insight into the protein folded state.

9.1 Mutants

A mutant protein is a protein with an amino acids sequence that is not identical
to the amino acids sequence of the wild type protein. Mutations are known to
a�ect proteins in many di�erent ways. A mutation in the catalytic site of an
enzyme may a�ect, usually in a negative manner, a protein's ability to perform
catalysis. Other mutations may a�ect biological properties such as the ability
to biochemically recognize and interact with other proteins or the ability to ad-
here to the cell membrane. Some mutations have but minor e�ect, others may
render a protein completely unfolded and hence useless in terms of functionality.

Since it is well known that some mutations are able to alter thermodynamic
properties of proteins and since equation (23) is based on a thermostability crite-
rion, It has only been natural to look for mutant-wild type pairs with known 3D
structures, such that the mutant has a di�erent melting temperature than the
wild type. We have been interested in the a�ect of such mutations on the fractal
properties of a protein. Do they change the spectral and fractal dimensions?
If so, is there any correlation between this change and the change in melting
temperature? We addressed these questions in a research conducted on 75 wild
type � mutant pairs. Thermodynamic data was obtained using the Internet
database ProTherm[29], a thermodynamic database for proteins and mutants.
Protein structures were downloaded from the protein data bank (PDB).

Instead of presenting all the data we have gathered, I chose to display a repre-
sentative case study in �gure (16). This example illustrates the major di�culty
we have encountered while trying to answer the questions presented above. The
majority of mutant - wild type pairs we have studied, although sequentially dif-
ferent, were structurally very similar. The close structural similarity led to the
fact that in most cases the change in fractal/spectral dimension was too subtle
and hence within experimental error. This di�culty should have been expected
since structure is more conserved, by evolution, than sequence[30]. Detectable
levels of sequence similarity usually imply signi�cant structural similarity. Sig-
ni�cant structural similarities are known between proteins with sequential iden-
tity as low as 30%, let alone wild type�mutant pairs that di�er in only a few
amino acids.
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Figure 16: Left: A cartoon depicting the 3D structure of a wild type pro-
tein, ribonuclease h from E.coli (PDB code: 2rn2). Right: The back bone
of the wild type protein superimposed on the backbone of the mutant pro-
tein (PDB code: 1kva). The alignment was produced with C-alpha Match at
http://bioinfo3d.cs.tau.ac.il/c_alpha_match/, the server was developed here
at T.A.U. The di�erence between the two proteins is in position 134 where the
polar amino acid Aspartate in the wild type was replaced with the non polar
amino acid Alanine in the mutant. The melting temperature of the mutant
is 3 to 7 degrees higher, depending on the experimental conditions, than the
melting temperature of the wild type. Nevertheless, it is clearly visible from
the backbone alignment that the structural di�erences are negligible. It is due
to this fact that the spectral and fractal dimensions of the two structures are
practically identical.

9.2 Hyperthermophiles

What makes proteins originating in hyperthermophile creatures hyper ther-
mostable ? How can these proteins withstand temperatures as high as 121 °C,
allowing survival and reproduction, without unfolding[31]? The literature is full
with mechanism that are alleged responsible for hyperthermostability, the most
frequently reported include increased van der Waals interactions[32], higher core
hydrophobicity[33], additional networks of hydrogen bonds[34], enhanced sec-
ondary structure propensity[35], ionic interactions[36], increased packing density[37]
and decreased length of surface loops[38]. It was shown recently that proteins
use various combinations of these mechanisms. However, no general physical
mechanism for increased thermostability was found.
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Figure 17: Separately �tting the data for hyperthermophiles and mesophiles
with the equation: 2

ds
+ 1

df
= a + b

ln(N) . Each open circle represent a protein,
thermostability is color coded, red indicates hyperthermophile, blue indicates
mesophile. It is clear from the plots and �ts that hyperthermophiles behave
similarly to mesophiles.

During the course of our research, proteins originating in hyperthermophiles
naturally raised special interest, since equation (23) was derived from funda-
mental principles all concerning thermal stability. We wondered whether hyper-
thermostable proteins would reveal their special nature either in the way they �t
equation (23) or in any other way that concern their fractal properties. It turned
out that we couldn't relate any abnormal behavior with proteins originating in
hyperthermophiles. On the contrary regarding their fractal properties we found
them to be rather similar to proteins originating in mesophiles. Figures (17)
and (18) illustrate our �ndings.

9.3 GroEL

In biology, chaperones are proteins that assist the non-covalent folding/unfolding
and the assembly/disassembly of other macromolecular structures[39]. GroEL
belongs to the chaperonin family of molecular chaperones and is found in the
bacteria E.coli. It is required for the proper folding of many proteins in the
bacteria[40, 41]. To function properly, GroEL requires the lid-like cochaperonin
protein complex GroES. The structure of GroEL is depicted in �gure (19), the
action mechanism is described in �gure (20).
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Figure 18: Upper �gure - 3D plot of topological parameters for hyperther-
mophiles and mesophiles. Lower �gure - a view of the same plot along the
1/ln(N) axis. Each open circle represents a protein, thermostability is color
coded, red indicates hyperthermophile, blue indicates mesophile. Although only
two perspective angles are presented above, other angles assert that this plot
doesn't reveal any di�erence between proteins originated in hyperthermophiles
and proteins originated in mesophiles..
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Figure 19: Three computer generated �gures depicting the structure of GroEL
(left) and GroEL complexed with the lid-like protein GroES (center and right).
Structurally, GroEL is a dual-ringed tetradecamer, with both the cis and trans
rings consisting of seven subunits each. Various colors are used to distinguish the
subunits of GroEL in the upper ring, the lower GroEL ring is uniformly yellow.
GroES is uniformly gray. The apical section of GroEL contains a large number
of hydrophobic binding sites for "native" (unfolded) protein substrates. Many
globular proteins won't bind to the apical domain because their hydrophobic
parts are clustered inside, away from the aqueous medium since this is the
thermodynamically optimal conformation. Thus, these "substrate sites" will
only bind to proteins which are not optimally folded. The apical domain also
has binding sites for GroES.

One may wonder what will happen if a protein is forced to strongly deviate
from equation (23) and how arti�cial deformations of the protein fold may lead
to a breakdown of criterion (23). Strong deformations of the protein fold may
actually happen in vivo as part of a natural process. A possible example is
GroEL, recent molecular dynamics simulations demonstrate the unfolding action
of GroEL on a protein substrate[42, 43]. Figure (21)[42] illustrates this process.
Our work provides a theoretical framework that may help understand GroEL
induced unfolding.

9.4 Biotechnology

Enzymes are proteins that catalyze (i.e. accelerate) chemical reactions. In
enzymatic reactions, the molecules at the beginning of the process are called
substrates, and the enzyme converts them into di�erent molecules, the prod-
ucts. Almost all processes in a biological cell need enzymes in order to occur
at signi�cant rates. Enzymes are characterized by a speci�c native fold that
is thermally stable. On the other hand, experimental evidence demonstrate
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Figure 20: Within the cell, the process of GroEL/ES mediated protein folding
involves multiple rounds of binding, encapsulation, and release of the substrate
protein. Unfolded substrate proteins bind to a hydrophobic binding patch on
the interior rim of the open cavity of GroEL, forming a binary complex with
the chaperonin. Binding of substrate protein in this manner, in addition to
binding of ATP, induces a conformational change that allows association of the
binary complex with a separate lid structure, GroES. Binding of GroES to the
open cavity of the chaperonin induces the individual subunits of the chaperonin
to rotate such that the hydrophobic substrate binding site is removed from
the interior of the cavity, causing the substrate protein to be ejected from the
rim into the now largely hydrophilic chamber. The hydrophilic environment
of the chamber favors the burying of hydrophobic residues of the substrate,
inducing substrate folding. Hydrolysis of ATP and binding of a new substrate
protein to the opposite cavity sends an allosteric signal causing GroES and
the encapsulated protein to be released into the cytosol. A given protein will
undergo multiple rounds of folding, returning each time to its original unfolded
state, until the native conformation or an intermediate structure committed to
reaching the native state is achieved. Alternatively, the substrate may succumb
to a competing reaction, such as misfolding and aggregation with other misfolded
proteins.
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Figure 21: A molecular dynamics simulation of the active unfolding of denatured
rhodanese by the chaperone GroEL. The compact denatured protein is bound
initially to the cis cavity and forms stable contacts with several of the subunits.
As the cis ring apical domains of GroEL undergo the transition from the closed
to the more open (ATP-bound) state, they exert a force on rhodanese that leads
to the increased unfolding of certain loops. The �gure shows snapshots of the
unfolding simulation.
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that motion is an important ingredient in the ability of an enzyme to func-
tion properly[1, 2]. We have shown that enzymes may be described as fractal
objects characterized by an excess of low vibrational modes. Furthermore, en-
zymes obey equation (23) that presumably provides a balance between thermal
stability and internal motion. The technological implications hasn't escaped our
eyes. Our work opens new possibilities for nanoscale and biologically inspired
engineering of catalysts, emphasizing the importance of internal motion. In an
attempt to mimic nature, one should consider designing arti�cial enzymes and
other nano devices in a manner that comply with equation (23).
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A Matlab computer program that calculates the fractal dimension and the ra-
dius of gyration of a protein given its PDB code.

function[dftenRg,Rg] = dfmasstenRg(PDBid)

% This function calculates :
% 1. The radius of gyration of a protein.
% 2. The df vector of a protein is calculated by taking the ten C-Alpha
% atoms that are closest to the center of mass as centers. The fractal
% dimension is then calculated for each of these atoms separately.
% The upper cuto� was taken to be the radius of gyration.
% 3. dftenRg is the average of the ten df's that were calculated in (2)
% Usage example : [dftenRg,Rg] = dfmasstenRg('9rnt')

% First we get the PDB from the data bank

Protein = getpdb(PDBid);
Run_Time=cputime;

% Then we �nd the center of mass, and extract the C-alpha atoms positions.

Atom_Number=length(Protein.Model.Atom);
C_Alpha_Count=0;
Total_Mass=0;
meanX=0;
meanY=0;
meanZ=0;
for loop=1:1:Atom_Number
if Protein.Model.Atom(loop).AtomName(1)=='C'
if length(Protein.Model.Atom(loop).AtomName)==2
if Protein.Model.Atom(loop).AtomName=='CA'
C_Alpha_Count=C_Alpha_Count+1;
X_C_Alpha_pos(C_Alpha_Count)=Protein.Model.Atom(loop).X;
Y_C_Alpha_pos(C_Alpha_Count)=Protein.Model.Atom(loop).Y;
Z_C_Alpha_pos(C_Alpha_Count)=Protein.Model.Atom(loop).Z;
meanX=meanX+12.0107*X_C_Alpha_pos(C_Alpha_Count);
meanY=meanY+12.0107*Y_C_Alpha_pos(C_Alpha_Count);
meanZ=meanZ+12.0107*Z_C_Alpha_pos(C_Alpha_Count);
else
X_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).X;
Y_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Y;
Z_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Z;
meanX=meanX+12.0107*X_C_Alpha_pos(C_Alpha_Count);
meanY=meanY+12.0107*Y_C_Alpha_pos(C_Alpha_Count);
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meanZ=meanZ+12.0107*Z_C_Alpha_pos(C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=12.0107;
end
else
X_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).X;
Y_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Y;
Z_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Z;
meanX=meanX+12.0107*X_C_Alpha_pos(C_Alpha_Count);
meanY=meanY+12.0107*Y_C_Alpha_pos(C_Alpha_Count);
meanZ=meanZ+12.0107*Z_C_Alpha_pos(C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=12.0107;
end
else
X_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).X;
Y_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Y;
Z_pos(loop-C_Alpha_Count)=Protein.Model.Atom(loop).Z;
if Protein.Model.Atom(loop).AtomName(1)=='N'
meanX=meanX+14.0067*X_pos(loop-C_Alpha_Count);
meanY=meanY+14.0067*Y_pos(loop-C_Alpha_Count);
meanZ=meanZ+14.0067*Z_pos(loop-C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=14.0067;
elseif Protein.Model.Atom(loop).AtomName(1)=='O'
meanX=meanX+15.9994*X_pos(loop-C_Alpha_Count);
meanY=meanY+15.9994*Y_pos(loop-C_Alpha_Count);
meanZ=meanZ+15.9994*Z_pos(loop-C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=15.9994;
elseif Protein.Model.Atom(loop).AtomName(1)=='S'
meanX=meanX+32.065*X_pos(loop-C_Alpha_Count);
meanY=meanY+32.065*Y_pos(loop-C_Alpha_Count);
meanZ=meanZ+32.065*Z_pos(loop-C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=32.065;

else
meanX=meanX+1.00794*X_pos(loop-C_Alpha_Count);
meanY=meanY+1.00794*Y_pos(loop-C_Alpha_Count);
meanZ=meanZ+1.00794*Z_pos(loop-C_Alpha_Count);
temp_Mass(loop-C_Alpha_Count)=1.00794;
end
end
end
C_Alpha_Number=C_Alpha_Count;
C_Alpha_Mass=12.0107*ones(1,C_Alpha_Number);
Mass=[ C_Alpha_Mass temp_Mass];
Total_Mass=sum(Mass);
meanX=meanX/Total_Mass;
meanY=meanY/Total_Mass;
meanZ=meanZ/Total_Mass;

46



10 APPENDIX A

clear protein;

% Then we �nd the distance of the C-alpha atoms from the Center of mass

distCA(:,1)=1:C_Alpha_Number;
distCA(:,2)=0;
dist_square_CA=(X_C_Alpha_pos-meanX).^2+(Y_C_Alpha_pos-meanY).^2;
dist_square_CA=dist_square_CA+(Z_C_Alpha_pos-meanZ).^2;
distCA(:,2)=sqrt( dist_square_CA );
distCA=sortrows(distCA,2);
dist_square_other=(X_pos-meanX).^2+(Y_pos-meanY).^2+(Z_pos-meanZ).^2;
Rg=sqrt((sum(dist_square_CA*12.0107)+sum(dist_square_other.*temp_Mass))/Total_Mass);

% Then we create the distance array on a log10 scale and sort it.

Distance_Array=(zeros(Atom_Number-1,10,'single'));
Mass_Array=(zeros(Atom_Number-1,10,'single'));
for loop=1:1:10
a=(X_pos-X_C_Alpha_pos(distCA(loop,1))).^2+(Y_pos-Y_C_Alpha_pos(distCA(loop,1))).^2;
a=a+(Z_pos-Z_C_Alpha_pos(distCA(loop,1))).^2;
b=(X_C_Alpha_pos-X_C_Alpha_pos(distCA(loop,1))).^2;
b=b+(Y_C_Alpha_pos-Y_C_Alpha_pos(distCA(loop,1))).^2;
b=b+(Z_C_Alpha_pos-Z_C_Alpha_pos(distCA(loop,1))).^2;
Temp_distance_vector= [a b];
Temp_Mass_vector=Mass;
Temp_Mass_vector(�nd(Temp_distance_vector==0))=[];
Temp_distance_vector(�nd(Temp_distance_vector==0))=[];
Combined_Matrix(:,1)=Temp_distance_vector;
Combined_Matrix(:,2)=Temp_Mass_vector';
Combined_Matrix=sortrows(Combined_Matrix,1);
Distance_Array(:,loop)=Combined_Matrix(:,1);
Mass_Array(:,loop)=Combined_Matrix(:,2);
clear Combined_Matrix
end
clear Temp_vector a b distCA meanX meanY meanZ X_pos Y_pos Z_pos
clear X_C_Alpha_pos Y_C_Alpha_pos Z_C_Alpha_pos
Distance_Array=sqrt(Distance_Array);
Distance_Array=log10(Distance_Array);
forloop=2:length(Mass_Array)
Mass_Array(loop,:)=Mass_Array(loop,:)+Mass_Array(loop-1,:);
end
Mass_Array=Mass_Array+12;
Mass_Array=log10(Mass_Array);

% Then we create the df vector and calculate the fractal dimension
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for loop=1:1:10
r=Distance_Array(1:end,loop);
const=log10(12);
upper_cuto�=round(Rg);
X=[ ones(upper_cuto�,1) log10(1:upper_cuto�)' ];
y(1)=const;
for second_loop=2:upper_cuto�
Stop_Point=�nd(r>log10( second_loop),1,'�rst')-1;
y(second_loop)=Mass_Array(Stop_Point,loop);
end
�t=regress(y' , X);
dfvector(loop)=�t(2);
end

dftenRg=mean(dfvector);
Run_Time=cputime-Run_Time
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A Matlab computer program that calculates the eigenfrequencies of a protein
within the Gaussian Network Model framework.

function [logeigen_PDBid,logN_PDBid] = gnmeig(PDBid,Rc)

% This function calculates the log of the eigen frequencies of
% a protein according to the GNM. The interaction cuto� Rc is
% determened by the user. It also returns a log(1:N) vector required
% for a possibble log log plot.
% Usage example : [logeigen_9rnt,logN_9rnt] = gnmeig('9rnt',7)

% First we get the pdb �le from the data bank

Protein = getpdb(PDBid);

% Then we extract the C-alpha Atoms to a seperate variable called Calpha

Calpha=[];
for i=1:1:length(Protein.Model.Atom)
if length(Protein.Model.Atom(i).AtomName)==2
if Protein.Model.Atom(i).AtomName=='CA'
Calpha=[Calpha Protein.Model.Atom(i)];
end
end
end

% Then we build the Γ matrix

Conectivity=zeros(length(Calpha));
for i=1:1:(length(Calpha)-1)
for j=i+1:1:length(Calpha)
if ( (Calpha(i).X-Calpha(j).X)^2 + (Calpha(i).Y-Calpha(j).Y)^2 + (Calpha(i).Z-

Calpha(j).Z)^2 ) <= Rc^2
Conectivity(i,j)=-1;
Conectivity(j,i)=-1;
Conectivity(i,i)=Conectivity(i,i)+1;
Conectivity(j,j)=Conectivity(j,j)+1;
end
end
end

% Then we diagonolize the Γ matrix and discard the
% �rst eigenvalue that correspond to translatory movment.
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eigen=sqrt(eig(Conectivity));
n=length(Calpha);
N=1:n;
logeigen_PDBid=log(eigen);
logeigen_PDBid(1)=[];
logN_PDBid=log(N)';
logN_PDBid(1)=[]';
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12 Appendix C

A di�erent route to equation (23) is to start with a tensorial elasticity model
rather than the scalar elasticity (Born) model described by the GNM. Here we
use the bond-bending Hamiltonian, previously studied in percolation[44, 45].
It describes the harmonic energy penalty associated with changing the bond
angles between nodes on the network in addition to the stretch-compress penalty
described by harmonic springs (namely, the GNM). Assuming bond bending
potentials to be e�ectively softer than stretch potentials, a very likely situation
in proteins, the vibrational density of states is dominated at low frequencies
by bond-bending rather than bond stretch-compress behavior. In this case the
cumulative density of states, similar to the scalar elasticity model, behaves as
G(ω) ∼ ωdE where dE is the bond-bending spectral dimension equivalent to the
spectral dimension ds. For percolation clusters dE < 1, and this is expected
also for other fractals.

Next consider the variance of �uctuations in the distance between two tagged
points on the protein that are Rg apart. This may be evaluated in a similar way

to the one described in Refs.[6, 46] as < −→x 2(Rg) >∼ N
2
dE
−1. Importantly, if

dE < 1 and df > 2, this diverges with increasing N faster than R2
g ∼ N2/df . We

postulate that melting occurs when the magnitude of these �uctuations reaches
the protein size, namely when < −→x 2(Rg) >∼ R2

g. This leads to :

2
dE
− 1− 2

df
=
const

lnN
. (29)

In order to �nd dE one has to solve for the eigenfrequencies of the of the bond
bending Hamiltonian. To circumvent this di�culty, we use relations that have
been derived for percolation clusters, assuming that they hold for other fractals
and therefore at least approximately for protein networks[44, 45]. With these
relations we �nd

2
dE
− 1− 2

df
∝ 2
ds
− 1 +

1
df

(30)

which leads again to equation (23).
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A raw data table that displays fractal and spectral dimension calculations pre-
formed on 543 proteins.

Protein Source N Rg ds 7 ds 6 df

1RZP Achromobacter cycloclastes (Bacteria) 988 27.43 2.00 1.82 2.67

1RMM Aequorea victoria (Fungi) 224 17.10 1.97 1.73 2.51

1RJP Alcaligenes faecalis (Bacteria) 474 21.66 2.10 1.81 2.64

1J9T Alcaligenes faecalis (Bacteria) 1008 27.62 2.05 1.78 2.69

1JLW Anopheles dirus b (Insecta) 434 20.70 1.77 1.59 2.59

1R12 Aplysia californica (California sea hare) 502 24.81 1.95 1.54 2.49

1R4V Aquifex aeolicus (hyperthermophile bacteria) 145 16.02 1.62 1.31 2.42

1ORY Aquifex aeolicus (hyperthermophile bacteria) 159 15.72 1.70 1.26 2.45

1YE8 Aquifex aeolicus (hyperthermophile bacteria) 167 15.48 1.59 1.33 2.47

1M1H Aquifex aeolicus (hyperthermophile bacteria) 182 19.73 1.63 1.56 2.34

1ZJR Aquifex aeolicus (hyperthermophile bacteria) 197 17.05 1.62 1.42 2.50

1T6T Aquifex aeolicus (hyperthermophile bacteria) 214 19.43 1.52 1.41 2.44

2NYV Aquifex aeolicus (hyperthermophile bacteria) 215 17.65 1.86 1.53 2.52

1Q77 Aquifex aeolicus (hyperthermophile bacteria) 274 21.36 1.67 1.46 2.49

1L8Q Aquifex aeolicus (hyperthermophile bacteria) 317 25.06 1.64 1.37 2.39

1C3P Aquifex aeolicus (hyperthermophile bacteria) 372 19.55 1.79 1.54 2.64

2AU3 Aquifex aeolicus (hyperthermophile bacteria) 403 24.52 1.69 1.39 2.51

1MZH Aquifex aeolicus (hyperthermophile bacteria) 446 22.88 1.99 1.74 2.59

1VQV Aquifex aeolicus (hyperthermophile bacteria) 577 26.59 1.92 1.63 2.56

1WY5 Aquifex aeolicus (hyperthermophile bacteria) 622 28.57 1.76 1.57 2.52

2NUB Aquifex aeolicus (hyperthermophile bacteria) 690 28.27 1.81 1.47 2.55

1NY5 Aquifex aeolicus (hyperthermophile bacteria) 769 29.49 1.79 1.54 2.50

2P3E Aquifex aeolicus (hyperthermophile bacteria) 801 27.75 2.21 1.89 2.62

2GKS Aquifex aeolicus (hyperthermophile bacteria) 1051 35.25 1.81 1.81 2.52

2ARK Aquifex aeolicus (hyperthermophile bacteria) 1074 35.68 2.20 1.72 2.56

2EHH Aquifex aeolicus (Hyperthermophile bacteria) 1174 31.22 2.21 1.61 2.59

1IVX Arthrobacter globiformis (Bacteria) 1238 31.68 2.14 1.77 2.71

52



13 APPENDIX D

Protein Source N Rg ds 7 ds 6 df

1CF3 Aspergillus niger 581 23.27 2.02 1.73 2.63

9RNT Aspergillus oryzae 104 12.45 1.69 1.5 2.43

1DE0 Azotobacter vinelandii (Bacteria) 578 24.08 2.07 1.70 2.61

1A3H Bacillus agaradherans (Bacteria) 300 17.64 1.92 1.70 2.59

1CDG Bacillus circulans 686 25.37 2.06 1.77 2.61

1R0R Bacillus licheniformis (Bacteria) 325 18.12 2.10 1.85 2.60

1RFZ Bacillus stearothermophilus (Bacteria) 637 23.50 1.87 1.68 2.63

1RJW Bacillus stearothermophilus (Bacteria) 1356 33.04 2.21 1.72 2.68

2GU3 Bacillus subtilis (Bacteria) 130 15.26 1.65 1.07 2.42

1R0U Bacillus subtilis (Bacteria) 142 15.52 1.69 1.42 2.40

1ISP Bacillus subtilis (Bacteria) 179 14.69 1.94 1.66 2.53

1SVI Bacillus subtilis (Bacteria) 182 15.91 1.65 1.46 2.50

1P3J Bacillus subtilis (Bacteria) 214 16.59 1.52 1.28 2.52

1QGQ Bacillus subtilis (Bacteria) 238 17.49 1.76 1.48 2.54

1XDZ Bacillus subtilis (Bacteria) 238 17.36 1.79 1.53 2.52

1COZ Bacillus subtilis (Bacteria) 252 20.23 1.68 1.40 2.45

1VHX Bacillus subtilis (Bacteria) 266 21.52 1.57 1.41 2.41

1I60 Bacillus subtilis (Bacteria) 272 18.01 1.82 1.66 2.53

1NRW Bacillus subtilis (Bacteria) 284 18.17 1.68 1.46 2.58

1T9H Bacillus subtilis (Bacteria) 287 22.59 1.75 1.46 2.44

1UV4 Bacillus subtilis (Bacteria) 291 17.57 1.78 1.49 2.58

1LF1 Bacillus subtilis (Bacteria) 296 17.67 1.97 1.69 2.57

2GKO Bacillus subtilis (Bacteria) 309 17.40 2.07 1.96 2.57

1WKQ Bacillus subtilis (Bacteria) 313 18.91 1.79 1.49 2.59

1S99 Bacillus subtilis (Bacteria) 352 19.51 1.98 1.63 2.59

1VI0 Bacillus subtilis (Bacteria) 367 21.46 1.74 1.52 2.53

1EX2 Bacillus subtilis (Bacteria) 370 25.46 1.75 1.40 2.48

1QD9 Bacillus subtilis (Bacteria) 372 19.19 2.21 1.76 2.57

1DBF Bacillus subtilis (Bacteria) 381 20.33 1.88 1.60 2.59

1RKT Bacillus subtilis (Bacteria) 409 23.45 1.64 1.38 2.58

1OYG Bacillus subtilis (Bacteria) 440 20.81 2.01 1.69 2.61
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Protein Source N Rg ds 7 ds 6 df

1QE3 Bacillus subtilis (Bacteria) 467 21.90 1.91 1.66 2.61

1rty Bacillus subtilis (Bacteria) 479 21.61 2.14 1.76 2.60

1GSK Bacillus subtilis (Bacteria) 502 22.03 1.99 1.77 2.62

1KQP Bacillus subtilis (Bacteria) 542 23.41 1.91 1.94 2.63

1BKP Bacillus subtilis (Bacteria) 557 23.83 1.87 1.55 2.61

1MKI Bacillus subtilis (Bacteria) 598 24.56 2.09 1.68 2.61

1RLI Bacillus subtilis (Bacteria) 648 25.03 1.88 1.64 2.60

1RXQ Bacillus subtilis (Bacteria) 680 33.82 2.16 1.50 2.40

1KAM Bacillus subtilis (Bacteria) 708 27.23 2.07 1.64 2.58

1HQS Bacillus subtilis (Bacteria) 871 27.74 1.94 1.70 2.62

1F9N Bacillus subtilis (Bacteria) 887 29.52 1.62 1.44 2.64

1XM3 Bacillus subtilis (Bacteria) 965 30.09 2.31 1.59 2.60

1NSL Bacillus subtilis (Bacteria) 1050 33.35 2.00 1.56 2.44

1IY9 Bacillus subtilis (Bacteria) 1096 35.08 2.16 1.83 2.51

2B3Z Bacillus subtilis (Bacteria) 1437 41.25 2.04 1.64 2.43

1AO0 Bacillus subtilis (Bacteria) 1820 38.12 2.12 2.12 2.57

1YIF Bacillus subtilis (Bacteria) 2128 38.59 2.37 2.02 2.69

1IJG Bacteriophage phi-29 (Virus) 3084 50.79 2.20 1.95 2.56

1A0I Bacteriophage t7 (Virus) 332 23.34 1.66 1.53 2.48

4GCR Bos taurus (Bovine) 185 16.75 1.94 1.57 2.52

2B4Z Bos taurus (Bovine) 111 12.70 1.65 1.52 2.37

1AGI Bos taurus (Bovine) 125 14.75 1.74 1.29 2.42

1RIE Bos taurus (Bovine) 127 14.00 1.58 1.42 2.47

1NEP Bos taurus (Bovine) 130 14.50 1.93 1.76 2.41

1PRW Bos taurus (Bovine) 147 14.78 1.82 1.41 2.37

1AMM Bos taurus (Bovine) 174 16.64 1.86 1.50 2.50

1KT6 Bos taurus (Bovine) 175 15.99 1.68 1.70 2.48

1A44 Bos taurus (Bovine) 185 15.27 1.84 1.48 2.52

2DCB Bos taurus (Bovine) 251 17.10 2.01 2.10 2.59

1B8O Bos taurus (Bovine) 280 18.11 1.96 1.69 2.58

1OKC Bos taurus (Bovine) 292 20.14 1.58 1.38 2.46
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Protein Source N Rg ds 7 ds 6 df

1RHS Bos taurus (Bovine) 292 18.64 1.72 1.50 2.56

1M4L Bos taurus (Bovine) 308 18.26 1.78 1.48 2.58

1ANN Bos taurus (Bovine) 315 21.57 1.73 1.44 2.49

2CI1 Bos taurus (Bovine) 315 17.61 1.86 1.58 2.57

1GT1 Bos taurus (Bovine) 316 21.27 1.67 1.45 2.50

1VFL Bos taurus (Bovine) 349 19.01 1.85 1.60 2.60

2ESC Bos taurus (Bovine) 361 20.12 1.88 1.71 2.57

1G0W Bos taurus (Bovine) 381 22.24 1.80 1.57 2.55

1F5A Bos taurus (Bovine) 455 24.10 1.93 1.60 2.55

1FON Bos taurus (Bovine) 464 22.15 1.94 1.74 2.57

1AKN Bos taurus (Bovine) 547 23.36 1.86 1.68 2.63

1G08 Bos taurus (Bovine) 572 23.69 1.79 1.53 2.54

2GJ1 Bos taurus (Bovine) 584 23.75 1.85 1.54 2.61

1AVC Bos taurus (Bovine) 642 28.44 1.99 1.59 2.51

1U19 Bos taurus (Bovine) 696 27.92 1.74 1.50 2.54

1F6R Bos taurus (Bovine) 727 26.21 2.20 1.55 2.65

1FGH Bos taurus (Bovine) 753 25.46 2.02 1.76 2.66

4NSE Bos taurus (Bovine) 832 29.21 2.00 1.81 2.62

1TU5 Bos taurus (Bovine) 1264 33.60 1.99 1.71 2.69

1K8K Bos taurus (Bovine) 1709 43.86 1.91 1.67 2.53

1AG8 Bos taurus (Bovine) 1972 35.84 2.18 2.42 2.71

4BLC Bos taurus (Bovine) 1996 36.09 2.15 1.98 2.73

1V97 Bos taurus (Bovine) 2594 45.44 2.09 1.78 2.63

1HWX Bos taurus (Bovine) 3006 43.05 2.04 1.73 2.76

3COX Brevibacterium sterolicum 500 21.99 1.97 2.08 2.60

1R9H Caenorhabditis elegans 118 13.46 1.60 1.59 2.41

1DXJ Canavalia ensiformis (Jack bean) 242 17.03 1.84 1.59 2.53

1CNV Canavalia ensiformis (Jack bean) 283 18.22 1.91 1.80 2.56

1CJK Canis familiaris (Dog) 709 31.73 2.01 1.46 2.45

1J9Y Cellvibrio japonicus (Bacteria) 337 18.97 1.98 1.56 2.59

1KKO Citrobacter amalonaticus (Bacteria) 802 26.37 2.02 1.76 2.65
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Protein Source N Rg ds 7 ds 6 df

1RGY Citrobacter freundii 360 19.71 1.82 1.61 2.61

1KEV Clostridium beijerinckii 1404 32.80 2.05 1.78 2.65

129L Coliphage t4 162 16.50 1.56 1.39 2.41

1A65 Coprinus cinereus (Inky cap fungus) 504 21.72 2.11 1.94 2.61

1BJK Cyanobacterium anabaena 295 19.54 1.71 1.56 2.55

1IPE Datura stramonium (Jimsonweed) 518 24.10 1.87 1.78 2.59

1B0P Desulfovibrio africanus (Bacteria) 2462 38.56 2.09 1.77 2.76

1KEK Desulfovibrio africanus (Bacteria) 2462 38.64 2.07 1.66 2.76

1LVK Dictyostelium discoideum 743 29.38 1.82 1.53 2.59

1R18 Drosophila melanogaster (Fruit �y) 223 16.88 1.62 1.38 2.51

1JNE Drosophila melanogaster (Fruit �y) 400 20.91 2.08 1.60 2.59

1HTY Drosophila melanogaster (Fruit �y) 1014 29.82 2.22 1.70 2.66

1RI1 Encephalitozoon cuniculi (Fungus) 252 18.06 1.65 1.46 2.53

1RGZ Enterobacter cloacae 370 19.48 1.88 1.63 2.62

1YIV Equus caballus (Horse) 131 14.05 1.64 1.35 2.34

2FRF Equus caballus (Horse) 152 15.29 1.58 1.31 2.39

1GJN Equus caballus (Horse) 153 15.19 1.52 1.37 2.39

1GVZ Equus caballus (Horse) 237 16.45 2.08 1.85 2.59

1B1X Equus caballus (Horse) 689 29.47 1.86 1.66 2.49

2JHF Equus caballus (Horse) 780 30.04 2.01 1.93 2.53

1GRJ Escherichia coli (Bacteria) 151 21.61 1.72 1.42 2.29

1R67 Escherichia coli (Bacteria) 151 14.31 1.70 1.42 2.50

1HZT Escherichia coli (Bacteria) 153 14.48 1.66 1.42 2.49

1RDA Escherichia coli (Bacteria) 155 15.52 1.65 1.48 2.48

2DXA Escherichia coli (Bacteria) 155 14.70 1.76 1.54 2.47

1RA9 Escherichia coli (Bacteria) 159 15.57 1.72 1.61 2.49

1RF7 Escherichia coli (Bacteria) 159 15.41 1.76 1.55 2.48

1K4N Escherichia coli (Bacteria) 180 16.13 1.63 1.25 2.50

1FM0 Escherichia coli (Bacteria) 223 19.10 1.80 1.54 2.48

2GZS Escherichia coli (Bacteria) 245 17.23 1.73 1.43 2.56

1R9L Escherichia coli (Bacteria) 309 20.57 1.91 1.60 2.48
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Protein Source N Rg ds 7 ds 6 df

1A40 Escherichia coli (Bacteria) 321 19.93 1.88 1.59 2.57

1A54 Escherichia coli (Bacteria) 321 20.03 1.85 1.57 2.56

1MSK Escherichia coli (Bacteria) 327 21.28 1.99 1.41 2.54

2HQ2 Escherichia coli (Bacteria) 331 20.61 2.05 1.54 2.53

1RI6 Escherichia coli (Bacteria) 333 18.67 1.92 1.54 2.57

1C4Q Escherichia coli (Bacteria) 345 21.07 2.03 1.73 2.50

1USG Escherichia coli (Bacteria) 345 22.31 1.92 1.67 2.46

1KHZ Escherichia coli (Bacteria) 407 21.46 1.72 1.55 2.58

1R61 Escherichia coli (Bacteria) 415 22.03 1.97 1.65 2.57

2EX2 Escherichia coli (Bacteria) 456 24.84 2.08 1.67 2.50

1AOP Escherichia coli (Bacteria) 460 21.73 1.90 1.60 2.59

1AYL Escherichia coli (Bacteria) 532 23.40 2.08 1.63 2.61

1GVF Escherichia coli (Bacteria) 548 25.76 1.91 1.62 2.55

2JG0 Escherichia coli (Bacteria) 554 22.66 1.84 1.53 2.66

1RQI Escherichia coli (Bacteria) 598 24.37 1.94 1.98 2.60

1QOR Escherichia coli (Bacteria) 652 28.84 1.90 1.72 2.49

1MXR Escherichia coli (Bacteria) 678 25.90 2.19 1.44 2.64

1R65 Escherichia coli (Bacteria) 680 25.99 2.10 1.54 2.63

1RIB Escherichia coli (Bacteria) 680 26.06 2.14 1.64 2.63

1RSV Escherichia coli (Bacteria) 681 25.91 2.20 1.51 2.63

1DKG Escherichia coli (Bacteria) 685 31.34 1.71 1.40 2.50

2DQ6 Escherichia coli (Bacteria) 865 28.07 2.03 1.65 2.63

1NEN Escherichia coli (Bacteria) 1068 33.63 1.92 1.63 2.64

1JRQ Escherichia coli (Bacteria) 1437 33.10 2.07 1.87 2.71

1CS1 Escherichia coli (Bacteria) 1532 33.43 2.09 1.92 2.66

1D8W Escherichia coli (Bacteria) 1575 33.29 2.08 1.74 2.71

1RP7 Escherichia coli (Bacteria) 1602 33.30 2.04 1.69 2.73

1JR3 Escherichia coli (Bacteria) 1769 39.42 1.85 1.47 2.56

1GGJ Escherichia coli (Bacteria) 2908 41.29 2.39 1.83 2.81

1CB8 Flavobacterium heparinum 674 27.50 1.97 1.66 2.61

1FOK Flavobacterium okeanokoites 568 26.99 1.81 1.45 2.62
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Protein Source N Rg ds 7 ds 6 df

1CUS Fusarium solani f. sp. pisi 197 15.25 1.86 1.72 2.55

1A26 Gallus gallus (Chicken) 351 20.90 1.86 1.70 2.52

1ROV Glycine max (Soybean) 834 28.45 1.94 1.69 2.64

1IPJ Glycine max (Soybean) 1088 32.97 2.15 1.90 2.55

1G12 Grifola frondosa (Fungi) 167 14.88 1.79 1.73 2.54

1NLZ Helicobacter pylori 26695 (Bacteria) 1804 39.96 2.01 1.59 2.60

1R1K Heliothis virescens (Noctuid moth) 477 22.78 1.80 1.27 2.54

1E2N Herpes simplex virus 619 24.16 1.91 1.57 2.61

1BV7 Hiv-1 198 17.43 1.92 1.54 2.48

2CIA Homo sapiens (Human) 121 13.27 1.66 1.36 2.46

1R2I Homo sapiens (Human) 143 14.23 1.57 1.27 2.46

1LF7 Homo sapiens (Human) 164 15.34 1.74 1.47 2.44

1RM8 Homo sapiens (Human) 169 15.16 1.68 1.48 2.50

1IAP Homo sapiens (Human) 190 17.47 1.57 1.25 2.46

1HDO Homo sapiens (Human) 206 15.83 1.97 1.67 2.64

1ZD8 Homo sapiens (Human) 212 19.39 1.55 1.26 2.46

1REI Homo sapiens ( Human ) 214 17.20 2.08 1.90 2.50

1A7S Homo sapiens (Human) 221 16.42 1.93 1.77 2.56

1AE5 Homo sapiens (Human) 223 16.50 1.98 1.86 2.56

1SMO Homo sapiens (Human) 223 18.71 1.62 1.38 2.46

1R5l Homo sapiens (Human) 251 17.87 1.76 1.55 2.52

1RAY Homo sapiens ( Human ) 258 17.49 1.94 1.55 2.55

1BKZ Homo sapiens (Human) 270 20.22 1.98 1.72 2.48

1DWD Homo sapiens (Human) 286 18.14 1.72 1.44 2.59

1RJB Homo sapiens (Human) 298 19.20 1.81 1.45 2.56

2H14 Homo sapiens (Human) 303 17.83 2.17 1.86 2.56

1RKP Homo sapiens (Human) 311 19.28 1.62 1.36 2.57

1ADS Homo sapiens (Human) 315 18.94 1.82 1.49 2.57

2REN Homo sapiens (Human) 320 19.73 1.86 1.68 2.57

1RYO Homo sapiens (Human) 325 19.41 1.88 1.69 2.53

2NZL Homo sapiens (Human) 351 19.07 1.82 1.67 2.61
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Protein Source N Rg ds 7 ds 6 df

1SO7 Homo sapiens (Human) 361 19.38 1.84 1.59 2.60

1AGD Homo sapiens (Human) 375 22.94 1.91 1.57 2.49

1K3Y Homo sapiens (Human) 442 21.69 1.71 1.30 2.55

2NW2 Homo sapiens (Human) 453 23.80 1.98 1.71 2.52

1R9O Homo sapiens (Human) 455 22.45 2.00 1.55 2.58

1CPU Homo sapiens (Human) 495 22.96 1.94 1.64 2.62

2O07 Homo sapiens (Human) 559 24.29 2.05 1.62 2.61

1RQ4 Homo sapiens (Human) 572 23.69 1.78 1.65 2.52

1HBA Homo sapiens (Human) 574 23.57 1.84 1.56 2.53

1R1Y Homo sapiens (Human) 574 23.41 1.81 1.61 2.53

1RPS Homo sapiens (Human) 574 23.68 1.83 1.57 2.53

1RQ3 Homo sapiens (Human) 574 23.63 1.78 1.59 2.53

1E7E Homo sapiens (Human) 582 27.83 1.60 1.36 2.50

1EER Homo sapiens (Human) 592 28.45 1.74 1.28 2.51

1R4l Homo sapiens (Human) 655 25.05 1.81 1.60 2.60

1DMT Homo sapiens (Human) 696 26.38 1.98 1.82 2.54

1H2V Homo sapiens (Human) 815 29.85 1.71 1.48 2.60

1KCW Homo sapiens (Human) 1017 28.34 2.11 1.87 2.64

1KR2 Homo sapiens (Human) 1395 34.89 1.88 1.52 2.56

1KQO Homo sapiens (Human) 1398 34.95 2.14 1.60 2.55

1IVH Homo sapiens (Human) 1548 34.30 2.25 1.76 2.67

1RX0 Homo sapiens ( Human ) 1573 34.15 2.29 1.89 2.68

1EX1 Hordeum vulgare (Barley) 602 24.91 2.14 1.74 2.64

1BVW Humicola insolens 360 19.19 1.88 1.73 2.58

1A39 Humicola insolens 410 20.74 1.94 1.78 2.60

2AYH Hybrid 214 16.07 1.90 1.71 2.55

1EPX Leishmania mexicana 1428 34.17 2.09 1.96 2.67

1GYP Leishmania mexicana 1432 32.50 2.05 1.74 2.68

1RL9 Limulus polyphemus (Crab) 356 20.07 1.86 1.63 2.58

1GBE Lysobacter enzymogenes 198 15.01 2.09 1.74 2.56

1EB8 Manihot esculenta (Cassava) 520 24.51 1.87 1.54 2.56
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Protein Source N Rg ds 7 ds 6 df

1R9C Mesorhizobium loti (Bacteria) 243 17.68 1.59 1.20 2.51

1E6Y Methanosarcina barkeri (Archaea) 2485 37.38 2.37 2.48 2.79

1NCJ Mus musculus (Mouse) 214 26.79 1.68 1.48 2.16

1EJO Mus musculus (Mouse) 443 24.32 2.06 1.69 2.48

1DQG Mus musculus (Mouse) 134 13.44 1.96 1.90 2.47

1MD6 Mus musculus (Mouse) 154 14.96 1.82 1.60 2.46

2CZT Mus musculus (Mouse) 155 14.94 1.66 1.49 2.46

1RUT Mus musculus (Mouse) 160 23.62 1.76 1.51 2.18

1Z06 Mus musculus (Mouse) 165 14.89 1.56 1.36 2.51

1X1R Mus musculus (Mouse) 169 15.38 1.70 1.38 2.50

1YZL Mus musculus (Mouse) 172 15.02 1.67 1.36 2.53

1KN3 Mus musculus (Mouse) 180 15.26 1.83 1.49 2.53

1PQ1 Mus musculus (Mouse) 180 15.83 1.71 1.28 2.55

2E6M Mus musculus (Mouse) 186 15.87 1.63 1.44 2.52

2ATF Mus musculus (Mouse) 195 16.44 1.83 1.54 2.50

1Z0J Mus musculus (Mouse) 220 17.24 1.66 1.26 2.52

1WNH Mus musculus (Mouse) 224 18.24 1.85 1.42 2.51

2DTC Mus musculus (Mouse) 227 18.99 1.84 1.58 2.50

1U2C Mus musculus (Mouse) 228 20.75 1.77 1.50 2.44

1VET Mus musculus (Mouse) 240 18.25 1.72 1.42 2.52

1IJY Mus musculus (Mouse) 244 21.10 1.80 1.52 2.43

2J0A Mus musculus (Mouse) 246 17.92 1.73 1.48 2.54

2GFH Mus musculus (Mouse) 248 20.27 1.64 1.43 2.48

2HUO Mus musculus (Mouse) 258 17.54 1.86 1.45 2.56

1RGX Mus musculus (Mouse) 272 22.85 1.63 1.43 2.41

1KSH Mus musculus (Mouse) 306 20.57 1.76 1.52 2.50

1ZCB Mus musculus (Mouse) 318 21.29 1.73 1.54 2.52

1VJ1 Mus musculus (Mouse) 333 21.54 1.82 1.50 2.51

1RE8 Mus musculus (Mouse) 337 20.02 1.79 1.48 2.53

2GDG Mus musculus (Mouse) 342 18.66 2.03 1.66 2.55

1RDQ Mus musculus (Mouse) 360 19.91 1.88 1.42 2.58
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2TNF Mus musculus (Mouse) 444 21.01 2.06 1.69 2.62

1DKF Mus musculus (Mouse) 449 22.36 1.75 1.39 2.53

1SH5 Mus musculus (Mouse) 464 26.21 1.80 1.47 2.51

1IG3 Mus musculus (Mouse) 497 23.88 1.93 1.56 2.57

2FR5 Mus musculus (Mouse) 540 22.32 2.02 1.65 2.64

2H3B Mus musculus (Mouse) 922 28.90 2.07 1.70 2.62

1VM8 Mus musculus (Mouse) 955 32.67 1.82 1.56 2.55

Protein Source N Rg ds 7 ds 6 df

2CXN Mus musculus (Mouse) 1114 28.61 2.01 1.73 2.71

1MOP Mycobacterium tuberculosis (Bacteria) 581 27.14 2.00 1.48 2.48

1K4Y Oryctolagus cuniculus (Rabbit) 501 22.49 1.90 1.75 2.62

1LOX Oryctolagus cuniculus (Rabbit) 647 27.49 1.95 1.54 2.60

1J0X Oryctolagus cuniculus (Rabbit) 1324 31.88 2.14 1.72 2.67

1ADO Oryctolagus cuniculus (Rabbit) 1452 35.16 2.16 1.65 2.69

1FIW Ovis aries (Sheep) 274 17.52 1.98 1.75 2.60

1LHP Ovis aries (Sheep) 615 25.53 2.00 1.60 2.62

1RFV Ovis aries (Sheep) 615 25.58 1.93 1.71 2.62

1Q4G Ovis aries (Sheep) 1110 31.35 1.98 1.91 2.64

1BXS Ovis aries (Sheep) 1976 36.02 2.23 2.08 2.71

1X2I Pyrococcus furiosus (hyperthermophile Archaea) 136 14.22 1.83 1.33 2.43

1SJ1 Pyrococcus furiosus (hyperthermophile Archaea) 147 16.21 1.86 1.60 2.34

1TWL Pyrococcus furiosus (hyperthermophile Archaea) 172 15.06 1.78 1.51 2.51

1IM5 Pyrococcus furiosus (hyperthermophile Archaea) 182 15.38 1.75 1.62 2.49

1JG1 Pyrococcus furiosus (hyperthermophile Archaea) 215 16.33 1.77 1.41 2.51

1PRY Pyrococcus furiosus (hyperthermophile Archaea) 226 17.44 1.82 1.46 2.52

1XI6 Pyrococcus furiosus (hyperthermophile Archaea) 234 16.88 1.68 1.48 2.53

1ELT Pyrococcus furiosus (hyperthermophile Archaea) 236 16.37 1.91 1.71 2.57

1G3Q Pyrococcus furiosus (hyperthermophile Archaea) 237 16.81 1.95 1.76 2.53

1F2T Pyrococcus furiosus (hyperthermophile Archaea) 288 20.50 2.02 1.47 2.49

1XEW Pyrococcus furiosus (hyperthermophile Archaea) 307 20.37 1.86 1.60 2.47
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2IA0 Pyrococcus furiosus (hyperthermophile Archaea) 309 21.47 1.54 1.29 2.46

1NNQ Pyrococcus furiosus (hyperthermophile Archaea) 340 20.02 1.82 1.50 2.54

1ELJ Pyrococcus furiosus (hyperthermophile Archaea) 379 21.15 1.87 1.63 2.56

2P4W Pyrococcus furiosus (hyperthermophile Archaea) 395 25.14 1.59 1.34 2.50

1XI3 Pyrococcus furiosus (hyperthermophile Archaea) 404 24.31 2.29 2.13 2.47

1DQ3 Pyrococcus furiosus (hyperthermophile Archaea) 454 24.85 1.77 1.54 2.56

1UA4 Pyrococcus furiosus (hyperthermophile Archaea) 454 21.13 1.98 1.66 2.62

1DQI Pyrococcus furiosus (hyperthermophile Archaea) 496 21.10 2.22 1.70 2.62

1NNW Pyrococcus furiosus (hyperthermophile Archaea) 502 24.20 1.83 1.83 2.51

1YQT Pyrococcus furiosus (hyperthermophile Archaea) 507 23.64 1.82 1.61 2.58

1XI8 Pyrococcus furiosus (hyperthermophile Archaea) 534 24.32 1.81 1.70 2.55

1MJF Pyrococcus furiosus (hyperthermophile Archaea) 540 24.40 2.12 1.87 2.60

2CFM Pyrococcus furiosus (hyperthermophile Archaea) 545 24.97 2.00 1.26 2.54

2DFI Pyrococcus furiosus (hyperthermophile Archaea) 602 25.52 1.85 1.65 2.58

1E19 Pyrococcus furiosus (hyperthermophile Archaea) 626 25.58 1.88 1.69 2.64

2CB0 Pyrococcus furiosus (hyperthermophile Archaea) 639 23.92 2.01 1.73 2.61

1PV9 Pyrococcus furiosus (hyperthermophile Archaea) 655 25.55 2.06 1.65 2.56

1II7 Pyrococcus furiosus (hyperthermophile Archaea) 665 30.98 1.94 1.54 2.47

1B43 Pyrococcus furiosus (hyperthermophile Archaea) 678 27.16 1.66 1.41 2.57

1Z26 Pyrococcus furiosus (hyperthermophile Archaea) 716 28.21 2.06 1.55 2.57

1AJ8 Pyrococcus furiosus (hyperthermophile Archaea) 741 26.42 1.98 1.63 2.67

1IOF Pyrococcus furiosus (hyperthermophile Archaea) 832 29.09 2.02 2.14 2.57

1IQ8 Pyrococcus furiosus (hyperthermophile Archaea) 1154 33.46 2.13 1.67 2.61

1AOR Pyrococcus furiosus (hyperthermophile Archaea) 1210 35.23 2.05 1.77 2.59

1IQP Pyrococcus furiosus (hyperthermophile Archaea) 1949 42.63 1.83 1.49 2.56

2I14 Pyrococcus furiosus (hyperthermophile Archaea) 2334 42.15 2.13 1.75 2.60

1ION Pyrococcus horikoshii (hyperthermophile Archaea) 234 17.06 1.87 1.64 2.52

1IU8 Pyrococcus horikoshii (hyperthermophile Archaea) 313 22.24 1.89 1.58 2.56

1JFL Pyrococcus horikoshii (hyperthermophile Archaea) 456 23.24 2.04 1.82 2.53

1GDE Pyrococcus horikoshii (hyperthermophile Archaea) 776 27.45 2.19 1.70 2.64

1LK5 Pyrococcus horikoshii (hyperthermophile Archaea) 916 28.32 2.21 2.12 2.68
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1B8A Pyrococcus kodakaraensis (hyperthermophile Archaea) 876 29.44 1.93 1.89 2.65

1AIS Pyrococcus woesei (hyperthermophile Archaea) 374 25.32 1.80 1.39 2.54

1MXG Pyrococcus woesei (hyperthermophile Archaea) 440 23.55 1.91 1.71 2.59

1HMU Pedobacter heparinus (Bacteria) 674 27.49 1.95 1.67 2.61

1BVC Physeter catodon 153 15.29 1.56 1.36 2.39

1KSI Pivum sativum (Pea seedling) 1282 32.40 2.13 1.72 2.71

1D5C Plasmodium falciparum 159 15.14 1.54 1.42 2.49

1Z6G Plasmodium falciparum 191 16.91 1.57 1.36 2.48

2C0D Plasmodium falciparum 353 20.56 1.72 1.55 2.52

1TV5 Plasmodium falciparum 373 19.39 2.07 1.63 2.61

1OKT Plasmodium falciparum 422 25.34 1.75 1.41 2.44

2B4R Plasmodium falciparum 1336 31.65 2.21 1.67 2.68

1CVR Porphyromonas gingivalis (Bacteria) 432 21.17 2.09 1.68 2.62

3REQ Propionibacterium freudenreichii shermanii 1345 33.46 2.15 1.69 2.62

1AQH Pseudoalteromonas haloplanctis (Bacteria) 448 22.55 1.97 1.69 2.58

1IX1 Pseudomonas aeruginosa (Bacteria) 338 24.77 1.57 1.23 2.43

1R7O Pseudomonas cellulosa (Bacteria) 362 19.25 1.90 1.69 2.57

1R7I Pseudomonas mevalonii (Bacteria) 747 25.74 1.98 1.73 2.62

1R31 Pseudomonas mevalonii (Bacteria) 751 25.87 1.89 1.86 2.62

1RZ5 Pseudomonas nautica (Bacteria) 309 20.98 1.84 1.50 2.48

1RE5 Pseudomonas putida kt2440 (Bacteria) 1767 35.66 2.05 1.58 2.73

1OH0 Pseudomonas putida (Bacteria) 253 18.41 1.93 1.69 2.54

1X7D Pseudomonas putida (Bacteria) 663 27.26 2.10 1.76 2.61

1ZOI Pseudomonas putida (Bacteria) 824 26.99 1.93 1.76 2.63

1UWK Pseudomonas putida (Bacteria) 1107 29.81 2.01 1.79 2.67

1J2T Pseudomonas putida (Bacteria) 1542 33.14 2.18 1.80 2.73

1IQQ Pyrus pyrifolia (Japanese pear) 200 16.72 1.83 1.58 2.52

1LFO Rattus norvegicus (Rat) 126 14.04 1.67 1.38 2.31

2BWQ Rattus norvegicus (Rat) 131 15.09 1.70 1.32 2.41

1RSY Rattus norvegicus (Rat) 135 15.83 1.46 1.15 2.42

3RAB Rattus norvegicus (Rat) 169 15.27 1.58 1.38 2.52
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1ZIR Rattus norvegicus (Rat) 178 16.99 2.00 1.53 2.52

2B5H Rattus norvegicus (Rat) 186 16.26 1.81 1.56 2.51

1KLK Rattus norvegicus (Rat) 203 16.83 1.76 1.42 2.52

1J02 Rattus norvegicus (Rat) 212 16.77 2.00 1.41 2.52

1XCL Rattus norvegicus (Rat) 229 16.33 1.83 1.54 2.55

2J7Y Rattus norvegicus (Rat) 235 17.76 1.63 1.31 2.52

1RJK Rattus norvegicus (Rat) 250 17.93 1.75 1.29 2.53

1RK3 Rattus norvegicus (Rat) 250 18.02 1.73 1.40 2.52

1RKH Rattus norvegicus (Rat) 253 17.99 1.75 1.30 2.53

1S50 Rattus norvegicus (Rat) 258 18.67 1.76 1.51 2.52

1F7Z Rattus norvegicus (Rat) 269 18.54 2.06 1.77 2.57

1T27 Rattus norvegicus (Rat) 269 18.72 1.64 1.36 2.47

1A06 Rattus norvegicus (Rat) 279 20.02 1.70 1.43 2.48

1LC0 Rattus norvegicus (Rat) 290 19.94 1.69 1.35 2.51

1QHW Rattus norvegicus (Rat) 300 17.90 1.91 1.74 2.62

2OVY Rattus norvegicus (Rat) 306 19.19 1.60 1.39 2.56

1GFI Rattus norvegicus (Rat) 313 20.78 1.62 1.41 2.54

1F3L Rattus norvegicus (Rat) 321 21.48 1.87 1.46 2.51

2G8J Rattus norvegicus (Rat) 322 20.82 1.93 1.79 2.54

1BD7 Rattus norvegicus (Rat) 347 20.20 2.16 1.75 2.58

1PD2 Rattus norvegicus (Rat) 398 21.07 1.62 1.43 2.57

1F20 Rattus norvegicus (Rat) 435 25.98 1.88 1.60 2.45

1ZCK Rattus norvegicus (Rat) 445 23.42 1.97 1.31 2.50

1BU8 Rattus norvegicus (Rat) 446 25.05 1.97 1.72 2.56

1ZCJ Rattus norvegicus (Rat) 459 22.44 1.87 1.60 2.55

1BCH Rattus norvegicus (Rat) 462 26.52 1.56 1.29 2.47

1T1U Rattus norvegicus (Rat) 597 25.15 1.81 1.51 2.62

1SQI Rattus norvegicus (Rat) 685 27.88 1.99 1.66 2.61

1OM4 Rattus norvegicus (Rat) 818 29.57 1.79 1.56 2.58

1R4A Rattus norvegicus (Rat) 864 35.87 1.81 1.46 2.43

1MJ3 Rattus norvegicus (Rat) 1548 31.93 2.13 1.73 2.69
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1KY4 Rattus norvegicus (Rat) 1712 35.53 2.10 1.87 2.73

1BOL Rhizopus niveus (Fungi) 222 17.38 1.81 1.63 2.50

1E18 Rhodobacter capsulatus 779 26.06 2.10 1.78 2.63

1RY5 Rhodobacter capsulatus 822 28.86 1.99 1.64 2.55

1RZH Rhodobacter capsulatus 822 28.76 1.97 1.66 2.53

1RGN Rhodobacter capsulatus 823 28.91 2.01 1.67 2.55

1RQK Rhodobacter capsulatus 824 29.11 2.00 1.66 2.54

2FTX Saccharomyces cerevisiae (Yeast) 146 15.38 1.64 1.34 2.40

1FUK Saccharomyces cerevisiae (Yeast) 157 14.92 1.60 1.36 2.49

1KY3 Saccharomyces cerevisiae (Yeast) 162 15.29 1.61 1.44 2.47

1EK0 Saccharomyces cerevisiae (Yeast) 168 15.32 1.60 1.35 2.51

1JR8 Saccharomyces cerevisiae (Yeast) 210 16.78 1.57 1.42 2.49

1AKY Saccharomyces cerevisiae (Yeast) 218 17.00 1.50 1.29 2.52

1G62 Saccharomyces cerevisiae (Yeast) 224 16.01 1.88 1.72 2.55

2AGK Saccharomyces cerevisiae (Yeast) 233 17.14 1.71 1.93 2.50

1AEB Saccharomyces cerevisiae (Yeast) 291 18.61 2.06 1.60 2.55

2EUT Saccharomyces cerevisiae (Yeast) 291 18.45 1.97 1.54 2.56

2UY2 Saccharomyces cerevisiae (Yeast) 295 17.78 1.95 1.73 2.56

1A48 Saccharomyces cerevisiae (Yeast) 298 19.83 1.73 1.64 2.52

1RB7 Saccharomyces cerevisiae (Yeast) 304 18.90 1.85 1.72 2.55

1P6O Saccharomyces cerevisiae (Yeast) 317 19.09 1.86 1.65 2.58

1I4W Saccharomyces cerevisiae (Yeast) 322 21.54 1.71 1.40 2.52

1C02 Saccharomyces cerevisiae (Yeast) 332 22.87 1.69 1.33 2.52

1KA1 Saccharomyces cerevisiae (Yeast) 354 19.57 1.82 1.65 2.58

1G2Q Saccharomyces cerevisiae (Yeast) 356 19.69 1.74 1.61 2.57

1DPJ Saccharomyces cerevisiae (Yeast) 358 19.58 1.97 1.68 2.61

1T0I Saccharomyces cerevisiae (Yeast) 362 21.04 1.77 1.42 2.58

1SQ9 Saccharomyces cerevisiae (Yeast) 378 20.11 1.97 1.54 2.58

1CI0 Saccharomyces cerevisiae (Yeast) 409 21.92 1.70 1.54 2.59

1AC5 Saccharomyces cerevisiae (Yeast) 483 22.14 2.00 1.56 2.62

1NEY Saccharomyces cerevisiae (Yeast) 492 24.38 1.99 1.60 2.63
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1VKH Saccharomyces cerevisiae (Yeast) 498 24.69 1.81 1.37 2.57

1TXN Saccharomyces cerevisiae (Yeast) 503 23.10 1.84 1.89 2.58

1R5T Saccharomyces cerevisiae (Yeast) 554 23.06 2.05 1.52 2.61

1IG0 Saccharomyces cerevisiae (Yeast) 636 25.62 1.90 1.63 2.60

2DH4 Saccharomyces cerevisiae (Yeast) 652 27.22 1.68 1.70 2.56

1P43 Saccharomyces cerevisiae (Yeast) 872 26.54 2.04 1.86 2.63

1RSG Saccharomyces cerevisiae (Yeast) 950 33.11 1.88 1.58 2.59

1M0W Saccharomyces cerevisiae (Yeast) 993 33.04 1.96 1.69 2.60

1M2O Saccharomyces cerevisiae (Yeast) 1758 46.45 1.98 1.91 2.53

1JIO Saccharopolyspora erythraea 403 21.02 1.75 1.49 2.55

1JIP Saccharopolyspora erythraea (Bacteria) 403 21.06 1.81 1.42 2.55

1FYE Salmonella typhimurium (Bacteria) 220 16.48 1.70 1.56 2.54

1LST Salmonella typhimurium (Bacteria) 239 17.69 1.78 1.59 2.52

2PKW Salmonella typhimurium (Bacteria) 246 18.39 1.72 1.41 2.50

1AF7 Salmonella typhimurium (Bacteria) 274 20.87 1.84 1.29 2.48

1VPD Salmonella typhimurium (Bacteria) 279 20.24 1.68 1.49 2.47

2OBW Salmonella typhimurium (Bacteria) 280 18.35 1.71 1.45 2.59

1SBP Salmonella typhimurium (Bacteria) 309 19.39 1.75 1.61 2.56

2AP1 Salmonella typhimurium (Bacteria) 312 20.92 1.75 1.45 2.49

1MDO Salmonella typhimurium (Bacteria) 355 20.71 1.73 1.53 2.56

1DZR Salmonella typhimurium (Bacteria) 367 21.62 1.93 1.74 2.55

1LH0 Salmonella typhimurium (Bacteria) 419 23.12 1.82 1.49 2.57

1T33 Salmonella typhimurium (Bacteria) 434 22.67 1.71 1.35 2.59

1K38 Salmonella typhimurium (Bacteria) 475 23.56 1.83 1.52 2.57

1JXH Salmonella typhimurium (Bacteria) 496 23.20 1.91 1.62 2.61

2RKM Salmonella typhimurium (Bacteria) 517 23.23 1.97 1.80 2.62

1B4Z Salmonella typhimurium (Bacteria) 520 22.94 2.03 1.75 2.63

1CBU Salmonella typhimurium (Bacteria) 539 24.93 1.76 1.52 2.57

2R2F Salmonella typhimurium (Bacteria) 571 25.56 1.90 1.52 2.58

1OAS Salmonella typhimurium (Bacteria) 630 24.60 2.03 1.76 2.60

2HI1 Salmonella typhimurium (Bacteria) 635 30.21 2.06 1.62 2.50

66



13 APPENDIX D

Protein Source N Rg ds 7 ds 6 df

1CNZ Salmonella typhimurium (Bacteria) 726 27.22 2.06 1.97 2.59

1JYO Salmonella typhimurium (Bacteria) 726 37.56 1.92 1.54 2.36

1Z5G Salmonella typhimurium (Bacteria) 835 30.93 1.98 1.97 2.54

1XR4 Salmonella typhimurium (Bacteria) 988 31.37 2.13 1.81 2.60

2FUV Salmonella typhimurium (Bacteria) 1088 34.59 2.16 1.76 2.54

1T3T Salmonella typhimurium (Bacteria) 1283 30.35 2.11 1.75 2.69

2AFA Salmonella typhimurium (Bacteria) 2394 40.07 2.03 1.72 2.73

1RKM Salmonella typhimurium 519 23.85 1.95 1.72 2.58

1ENF Staphylococcus aureus (Bacteria) 222 17.41 1.86 1.65 2.54

1QWZ Staphylococcus aureus (Bacteria) 235 17.99 1.62 1.50 2.53

2CCJ Staphylococcus aureus (Bacteria) 391 25.24 1.83 1.45 2.50

1GQ6 Streptomyces clavuligerus (Bacteria) 888 27.59 2.10 1.80 2.61

3PTE Streptomyces sp. 347 18.93 1.80 1.69 2.60

1NUY Sus scrofa (Pig) 328 19.54 1.93 1.67 2.58

1ALV Sus scrofa (Pig) 346 20.62 1.79 1.41 2.54

2GSR Sus scrofa (Pig) 416 20.98 1.75 1.64 2.53

1QD1 Sus scrofa (Pig) 668 29.45 1.98 1.82 2.47

1EVI Sus scrofa (Pig) 680 29.85 2.13 1.74 2.59

1EUD Sus scrofa (Pig) 698 27.59 2.02 1.67 2.60

1B0J Sus scrofa (Pig) 753 25.67 2.05 1.73 2.66

1FP3 Sus scrofa (Pig) 804 28.61 1.92 1.59 2.62

1LWD Sus scrofa (Pig) 826 28.15 1.87 1.58 2.59

1E7U Sus scrofa (Pig) 872 29.36 1.87 1.56 2.61

2BKH Sus scrofa (Pig) 924 34.24 1.94 1.57 2.55

1JS3 Sus scrofa (Pig) 928 27.56 2.13 1.62 2.68

1ORV Sus scrofa (Pig) 2912 53.17 1.98 1.74 2.52

1IFH Synthetic construct 436 25.27 2.05 1.65 2.43

1CRL Synthetic construct 534 22.11 2.00 1.79 2.62

1TMY Thermotoga maritima (hyperthermophile bacteria) 118 12.95 1.70 1.37 2.43

1B8Z Thermotoga maritima (hyperthermophile bacteria) 134 14.13 1.70 1.30 2.36

1GUI Thermotoga maritima (hyperthermophile bacteria) 155 14.89 1.60 1.36 2.47
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1J5Y Thermotoga maritima (hyperthermophile bacteria) 167 18.90 1.79 1.58 2.34

1DMG Thermotoga maritima (hyperthermophile bacteria) 172 16.48 1.61 1.49 2.46

1DD5 Thermotoga maritima (hyperthermophile bacteria) 184 22.19 1.68 1.26 2.28

1I82 Thermotoga maritima (hyperthermophile bacteria) 189 15.34 2.08 1.63 2.52

1I5D Thermotoga maritima (hyperthermophile bacteria) 190 17.55 1.44 1.24 2.42

1L9G Thermotoga maritima (hyperthermophile bacteria) 191 16.08 1.88 1.71 2.50

1K9V Thermotoga maritima (hyperthermophile bacteria) 200 15.81 2.09 1.59 2.54

1XKR Thermotoga maritima (hyperthermophile bacteria) 205 16.96 1.64 1.42 2.48

1KGS Thermotoga maritima (hyperthermophile bacteria) 211 21.18 1.51 1.30 2.35

1P2F Thermotoga maritima (hyperthermophile bacteria) 212 19.45 1.67 1.40 2.43

1O4T Thermotoga maritima (hyperthermophile bacteria) 230 17.09 1.84 1.59 2.53

1O0X Thermotoga maritima (hyperthermophile bacteria) 249 17.18 1.87 1.85 2.53

1J6O Thermotoga maritima (hyperthermophile bacteria) 259 17.34 1.85 1.51 2.56

2ETH Thermotoga maritima (hyperthermophile bacteria) 271 20.27 1.50 1.09 2.40

1VHN Thermotoga maritima (hyperthermophile bacteria) 299 19.85 1.97 1.59 2.53

1J5X Thermotoga maritima (hyperthermophile bacteria) 312 19.29 1.69 1.46 2.53

1VHO Thermotoga maritima (hyperthermophile bacteria) 313 21.81 1.88 1.61 2.50

1GXJ Thermotoga maritima (hyperthermophile bacteria) 323 21.48 1.79 1.41 2.43

1D1G Thermotoga maritima (hyperthermophile bacteria) 328 21.91 1.96 1.56 2.55

1CZ3 Thermotoga maritima (hyperthermophile bacteria) 332 21.84 2.03 1.56 2.56

1JCF Thermotoga maritima (hyperthermophile bacteria) 336 20.77 1.91 1.67 2.56

1WOS Thermotoga maritima (hyperthermophile bacteria) 361 20.49 2.11 2.01 2.52

1I58 Thermotoga maritima (hyperthermophile bacteria) 364 23.47 1.72 1.32 2.44

1KQ3 Thermotoga maritima (hyperthermophile bacteria) 364 20.70 2.03 1.83 2.57

1E4F Thermotoga maritima (hyperthermophile bacteria) 378 23.28 1.86 1.55 2.54

1VPE Thermotoga maritima (hyperthermophile bacteria) 398 22.45 2.06 1.57 2.55

1O20 Thermotoga maritima (hyperthermophile bacteria) 412 24.67 1.92 1.59 2.46

1J6U Thermotoga maritima (hyperthermophile bacteria) 422 22.27 1.90 1.67 2.56

1KUT Thermotoga maritima (hyperthermophile bacteria) 427 26.80 1.54 1.36 2.45

1O0W Thermotoga maritima (hyperthermophile bacteria) 477 27.30 1.66 1.29 2.50

1ZY9 Thermotoga maritima (hyperthermophile bacteria) 522 22.88 2.02 1.68 2.63
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1MRZ Thermotoga maritima (hyperthermophile bacteria) 536 27.63 1.97 1.50 2.48

1J5W Thermotoga maritima (hyperthermophile bacteria) 542 22.69 1.93 1.42 2.61

1GJW Thermotoga maritima (hyperthermophile bacteria) 636 26.11 1.98 1.78 2.61

1O14 Thermotoga maritima (hyperthermophile bacteria) 638 30.55 1.80 1.62 2.43

1EG5 Thermotoga maritima (hyperthermophile bacteria) 707 27.15 2.02 1.66 2.63

1O12 Thermotoga maritima (hyperthermophile bacteria) 708 30.00 2.09 1.67 2.49

2ORD Thermotoga maritima (hyperthermophile bacteria) 797 25.96 2.20 1.77 2.67

1ZOR Thermotoga maritima (hyperthermophile bacteria) 814 29.28 1.95 1.62 2.57

1O26 Thermotoga maritima (hyperthermophile bacteria) 876 28.91 1.82 1.63 2.68

1LWJ Thermotoga maritima (hyperthermophile bacteria) 882 30.87 1.90 1.66 2.58

1VLH Thermotoga maritima (hyperthermophile bacteria) 947 28.35 1.91 1.34 2.60

1INL Thermotoga maritima (hyperthermophile bacteria) 1151 34.79 2.27 1.78 2.54

1VJ0 Thermotoga maritima (hyperthermophile bacteria) 1459 33.18 2.16 1.75 2.74

1A47 Thermoanaerobacterium thermosulfurigenes 683 25.53 2.08 1.74 2.62

1D2M Thermus thermophilus 552 27.17 1.86 1.66 2.53

1KOR Thermus thermophilus 1538 34.06 2.06 1.98 2.70

1E3Q Torpedo californica ( Paci�c electric ray ) 532 22.83 2.01 1.63 2.66

1KUF Trimeresurus mucrosquamatus 201 16.10 1.82 1.71 2.54

16PK Trypanosoma brucei 415 23.14 1.82 1.62 2.54

1I13 Trypanosoma cruzi 380 20.06 1.77 1.57 2.59

1MZ5 Trypanosoma rangeli 622 27.10 2.06 1.66 2.55

1NAR Vicia narbonensis 289 18.35 1.88 1.50 2.55
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